

Measuring Occupancy with Delta
Controls O3 Sense, Azure IoT, and

ICONICS

Page 2 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Contents
1 Introduction .. 5

2 Infrastructure overview .. 5

 On-premises infrastructure ... 5

 Cloud infrastructure .. 6

3 Configuring Azure prerequisites ... 6

 Azure Resource Group .. 6

 Azure IoT Hub .. 7

 Event Hub .. 8

 Azure SQL Server ... 8

 VM based SQL Server .. 12

4 Configuring the O3 Sense .. 12

5 Configuring ICONICS IoTWorX to push data from the O3 Sense to Azure .. 15

 Specify how to access the O3.. 15

 Discover devices .. 16

 Create a publish list ... 18

 Create a custom encoder .. 18

 Create a publisher connection .. 19

 Viewing data sent by IoTWorX .. 20

 Viewing data received by IoT Hub .. 20

6 Routing data from IoT Hub to Event Hub ... 21

 Creating a filter for the data ... 21

 Configuring routing and data enrichment .. 22

 Viewing data received by Event Hub .. 24

7 Configuring an Azure Function to push data from Event Hub to SQL Server 26

 Creating the Function App .. 26

 Specifying configuration values .. 27

 Creating the Function ... 27

 Viewing data received by SQL Server.. 30

8 Alternative: push data from Event Hub to Azure Table Storage .. 32

 Creating the Function ... 32

 Viewing data received by Azure Table Storage ... 36

9 Creating a Power BI application to display the data ... 37

Page 3 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

10 Using GENESIS64 as a no code client .. 38

 Create a custom encoder .. 38

 Create a subscriber connection .. 39

 Visualize and interact with published data ... 40

 Organizing data with ICONICS AssetWorX .. 40

 Create an IoT dashboard ... 41

11 Next steps ... 42

Page 4 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Copyright and Confidentiality
By accessing and using the installation instructions (the “instructions”) you acknowledge and agree, on
your behalf and on behalf of the person, entity or other organization on whose behalf you are accessing
the instructions, that neither Microsoft, ICONICS, Delta Controls, nor any of its service providers,
including, without limitation, any system integrator or independent software vendor: (1) makes any
representations or warranties of any kind, either express, implied, statuary or otherwise with respect to
the instructions, including the accuracy, completeness or usefulness thereof; and (2) shall be liable for
damages of any kind, under any legal theory, arising out of or in connection with your election to follow
or use, or inability to follow or use, the instructions, including any direct, indirect, incidental, special,
punitive or consequential damages, or for loss of use, loss of profits, loss of data, loss of business, or loss
of privacy or security, even if foreseeable, arising out of or in connection with your election to follow or
use, or inability to follow or use, the instructions. You further acknowledge and agree that your use of
the instructions, whether directly or indirectly, is at your own risk and that you expressly assume all risk
in connection with your use of the instructions. If you do not agree to the foregoing, you may not access
or use the instructions.

Copyright © 2021, Microsoft Corporation, Delta Controls, Inc. and ICONICS, Inc. All rights reserved.

Authors
• Spyros Sakellariadis, Microsoft Corporation
• Maksym Mushkin, Microsoft Corporation
• Zhi Wei Li, Director of Innovation & Incubation Solutions, ICONICS
• Gamal Mustapha, Director of Product Management, Delta Controls Inc.

https://www.linkedin.com/in/spyross/
https://www.linkedin.com/in/max-mushkin/
https://www.linkedin.com/in/lizhiwei-84/
https://www.linkedin.com/in/gamalmustapha/

Page 5 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

1 Introduction
Monitoring the occupancy of spaces in commercial buildings and spaces has many benefits. Obvious
scenarios include security, safety, and energy conservation – is there someone in the building when it is
supposed to be empty, is there someone on a construction site when it is not safe, or is a room being
heated when it is not in use? This document is being written during the coronavirus pandemic, and
monitoring occupancy has taken on an additional importance. Which spaces in an office building are
occupied and will need to be sanitized after the occupants leave?

Monitoring occupancy poses a couple of technical challenges which need to be overcome. First,
detecting the presence of someone in a space can be done using motion, audio, heat, or visual sensors,
but on their own each are subject to false readings – is the motion due to the wind, or a cat, is the heat
due to a portable heater or is the occupant present but not moving. Second, just detecting the presence
of someone is not adequate, as you need that information to be analyzed and appropriate action taken.

In the following sections we describe using an occupancy sensing solution from Delta Controls
connected to the Microsoft Azure cloud and using a couple of different technologies from Microsoft and
ICONICS to analyze the data.

2 Infrastructure overview
 On-premises infrastructure

In the setup described in this paper, we are using a Delta Controls O3™ Sense to monitor room
occupancy with a combination of temperature, humidity, motion, sound, and light sensors. It has a
hardwired connection to a Windows 10 computer and communicates over BACnet/IP with an ICONICS
IoTWorX application running on that computer. In turn, the IoTWorX application communicates over the
Internet to applications in the Microsoft Azure cloud. The physical configuration is shown in Figure 1:

Figure 1 Physical Layout

https://deltacontrols.com/
https://www.microsoft.com/
https://iconics.com/
https://deltacontrols.com/wp-content/uploads/O3_Sensor_Hub_2.0_Catalog_Sheet-4.pdf
https://iconics.com/Products/IoTWorX
https://iconics.com/Products/IoTWorX
https://azure.microsoft.com/en-us/

Page 6 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

In this configuration we use IoTWorX to read and write values from and to the O3 Sense. Specifically, we
configure IoTWorX to perform the following functions:

1. Connect to the O3 Sense via BACnet
2. Request values of certain objects on the O3 every minute.
3. Reformat the data into a prescribed format .
4. Transmit that data to Azure IoT Hub.

 Cloud infrastructure
After the data arrives in Azure IoT Hub, we use Azure IoT Hub Message Routing to route the data to an
Event Hub based upon the origin and type of data. We then use an Azure Function to read the incoming
data stream and write it to a SQL database, and use Power BI to display the current value and historical
trends. Finally, we also use modules of ICONICS GENESIS64 to analyze and display the data. The overall
flow is shown in Figure 2:

Figure 2 Software components

The following sections contain a description of how to configure the IoTWorX gateway and the Azure
components to monitor the occupancy and other elements detected by the O3 Sense.

3 Configuring Azure prerequisites
 Azure Resource Group

This article assumes the reader has basic knowledge of Microsoft cloud products and services and
understands how to create and configure resources. Consequently, only descriptions or diagrams of the
final configuration will be included, not step-by-step instructions.

The example described here uses various Azure services, deployed in a single resource group shown
below. We called the resource group IoT_projects when creating this configuration. The final set of
services looked like the following:

Page 7 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 3: Azure Resource Group

The key services we will use in this solution are the following:

Resource Type Function
centralhub Azure IoT Hub Receive data from the O3 Sense
iot SQL database Store data received from the O3 Sense
iothome SQL server Holds SQL database
DataEnrichmentCS Function App Writes data from IoT Hub to SQL Server

 Azure IoT Hub
The first task after creating the empty resource group is to create an Azure IoT Hub to receive the data
from the O3 Sense. In the Azure portal select + Create a resource, select the Internet of Things category,
and click on IoT Hub. To create the environment used in this example, set the parameters as follows:

Settings Value
Subscription Enter your Azure IoT subscription name. In our example, this is Subscription-1.
Resource Group Enter IoT_projects.
Region Select the region where you have created the IoT Hub. In our example, this is East US.
IoT Hub Name Enter centralhub.

Next, select the Built-in endpoints category, and create a couple of consumer groups for use by
different readers of the data:

• Delta1
• Delta2

Page 8 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Next, from the left menu select IoT Devices, then select + New at the top of the page to create a new
device. Add the following:

Name Value
Device ID Enter IoTWorX.

Finally, note the following parameters for the IoT Hub, which will be needed later:

Parameter Value
Host name From Overview tab
IoT Hub primary connection string From Shared Access policies à iothubowner
Device primary connection string From IoT devices à IoTWorX

 Event Hub
Next, we need an Event Hub to which we will route a subset of the data coming into IoT Hub. In the
Azure portal select + Create a resource, enter Event Hubs in the search category, click on Event Hubs
and Create. To create the environment used in this example, set the parameters as follows:

Settings Value
Subscription Enter your Azure IoT subscription name. In our example, this is Subscription-1.
Resource Group Enter IoT_projects.
Namespace name Enter centralhubs
Location Select the region where you have created the IoT Hub. In our example, this is East US.
Pricing tier Select Standard. Do not select Basic, as Basic allows only one consumer group and we

need two in order to use Visual Studio to view data coming into the Event Hub.

Click Review + create. Once the Event Hub is created, go to the resource. From the left menu, select
Event Hubs and click + Event Hub at the top of the page. To create the environment used in this
example, set the parameters as follows:

Settings Value
Name Enter iotworx.

 Azure SQL Server
Prior to installing the on-premises components, we also created a SQL database and tables to store the
data. In the Azure portal select + Create a resource and select the SQL Database category to bring up
the Create SQL Database page. To create the environment used in this example, set the parameters as
follows:

Azure Service Value
SQL Server Enter iothome.database.windows.net.
SQL Database Enter iot.

The completed deployment is shown here:

Page 9 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 4: SQL Server overview

Next, we need to create the table in the database. On your desktop launch SQL Server Management
Studio and select File  Connect Object Explorer. Enter iothome.database.windows.net for the name
of the database and enter your SQL authentication credentials. Select the iot database, click New Query,
and run the following query to create a table to hold the data from the O3 Sense.

In SQL Server Management Studio:

CREATE TABLE [dbo].[Telemetry](
 [Building] [varchar](50) NOT NULL,
 [Parameter] [varchar](50) NOT NULL,
 [Value] [float] NULL,
 [TimeStamp] [datetime] NULL
) ON [PRIMARY]
GO

Page 10 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 5: SQL Server Create Table

The Telemetry table will hold the data as it comes from the sensor, storing each measurement in a
separate record. We also need a way to see all the measurements at a moment in time, which is
complicated if each measurement is in a separate record. To do this we create a view. Select the iot
database, click New Query, and run the following query to create the view:

CREATE VIEW [dbo].[v_O3_Pivot] AS
SELECT *
FROM
 (SELECT *
 FROM
 (SELECT PVTS.*
 FROM
 (SELECT CONVERT(date, TIMESTAMP) AS Date, Building,TimeStamp,[Humidity],
 [Occupant_temperature],[Internal_temperature], [IR_temperature],
 [Temperature_setpoint],[Acoustic_occupancy],
 [Acoustic_occupancy_threshhold], [Audio_retrigger_period],
 [Audio_sensitivity],[Audio_inactivity_period], [Light_level],
 [Light_level_setpoint],[Motion_sensor], [Occupancy],[Sound_level],
 [Sound_volume]
 FROM
 (SELECT t1.*
 FROM Telemetry t1) AS SourceTable PIVOT(MAX(Value)
 FOR PARAMETER IN([Light_level], [Light_level_setpoint], [Motion_sensor],
 [Sound_level], [Humidity], [Temperature_setpoint],
 [Occupant_Temperature], [Internal_temperature], [IR_temperature],
 [Acoustic_occupancy], [Occupancy], [Sound_volume],
 [Acoustic_occupancy_threshhold], [Audio_retrigger_period],
 [Audio_sensitivity], [Audio_inactivity_period]))
 AS PivotTable) AS PVTS
 WHERE [Building] IS NOT NULL AND [Temperature_setpoint] IS NOT NULL AND
 [Audio_sensitivity] IS NOT NULL) AS PVTSI) AS PVTSIP
GO

Page 11 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

In SQL Server Management Studio:

Figure 6: SQL Server Create View

Finally, we need to get the connection string for the database, which we will use later in an
Azure Function. In the Azure portal, select the SQL database iot. In the left pane, select Connection
strings. Note the ADO.NET connection string.

Figure 7: SQL database connection strings

Page 12 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

It should look like the following:

Connection string Value
ADO.NET Server=tcp:iothome.database.windows.net,1433;Initial

Catalog=iot;Persist Security Info=False;User
ID=iot_admin;Password={your_password};MultipleActiveResultSet
s=False;Encrypt=True;TrustServerCertificate=False;Connection
Timeout=30;

When the string is needed later, you will need to insert the password created for the database in the
place of [your password] in the string above.

 VM based SQL Server
An alternative is to use a pre-existing SQL server, either local or installed in a VM you already have. In
that case, create the database and tables as in the previous section. Once created, construct the
connection string that you will need later as follows:

Connection string Value
ADO.NET Server=tcp:<DNS name of the VM>,1433;Initial

Catalog=iot;Persist Security Info=False;User
ID=iot_admin;Password={your_password};MultipleActiveResultSet
s=False;Encrypt=True;TrustServerCertificate=True;Connection
Timeout=30;

There are two differences from the connection string used if the SQL Server is an Azure SQL Server. First,
the Server name is not the DNS name of the SQL Server, it is the DNS name of the VM. Second, you need
to change TrustServerCertificate to True.

4 Configuring the O3 Sense
This guide from Delta Controls describes how to install and set up the O3 Sense. To set up the O3, you
will need an Android or iOS device with the O3 Setup app installed. You can get the app from Google
Play or the App Store.

Key steps to configure the O3 are as follows:

1. Open the O3 Setup app and select Continue to enter Lite Mode.
2. In the lower right corner of the screen, select Connect.
3. Select your O3 to initiate a connection over Bluetooth O3 units are displayed in the order of

signal strength.
4. Once the connection is initiated, select Verify. The O3 should play a sound and the light ring

flashes blue.
5. Select Yes, connect to this hub. Data loads from the hub and the status changes to Connected.
6. You can now view device information and sensor data from the hub in the Diagnostics tab.
7. After connecting to the hub, select the Settings tab.

https://deltacontrols.com/wp-content/uploads/Quick-Start-Guide-Installation-Setup-1-1.pdf

Page 13 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

8. By default, the O3 is set to DHCP. If you want to assign a static IP address to the O3, select the
pencil icon next to Network, select Static, enter the IP settings, then select Save.

By default, the O3 is set to BACnet Ethernet. If you want to change the protocol to BACnet/IP, select the
pencil icon next to BACnet. Select IP, then select Save. The BACnet device ID and UDP port can also be
changed if desired.
When finished, the setup app should show a screen like this:

Figure 8: O3 configuration in mobile app

Note the device ID and UDP Port in this app – you will need later. Click Apply settings to hub, then click
on the Diagnostics tab to see additional information:

Page 14 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 9: Diagnostics for the O3

Note the IP address – you will need it in the next section.

Page 15 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

5 Configuring ICONICS IoTWorX to push
data from the O3 Sense to Azure

Installing and configuring ICONICS IoTWorX is covered in detail in a previously published document on
the ICONICS website, Using IoTWorX as a Gateway (below referred to as Using IoTWorX).

Follow the instructions in that document for using ICONICS Workbench, inserting the values shown
below instead of those shown in Using IoTWorX.

 Specify how to access the O3
Follow the instructions in Using IoTWorX, Section 3.1 to create an entry for the O3, using the following
settings:

Parameter Value
Name Enter Delta O3.
Channel Type Select BACnetIP.
IP address Enter the IP address from the Diagnostics

tab in the O3 mobile app.
UDP port Enter the UDP port from the Settings tab

in the O3 mobile app.

Check the Enabled checkbox in the Port Settings section. When this step is complete, the configuration
in ICONICS Workbench should look like that shown below:

Figure 10 Port connecting to the O3

https://iconics.com/Documents/WhitePapers/Using-IoTWorX-as-a-Gateway

Page 16 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

 Discover devices
The data points collected by the O3 are listed in the following document: BACnet Application Guide. The
ones we collect in this article are:

Name Description

Occupant Temperature Temperature at 1 m (3 ft) above the floor. This is a composite value derived
from the O3’s internal temperature sensors and the IR temperature sensor.
Range: 0°C to 59°C (32°F to 138°F).

IR Temperature Average temperature of surfaces in the O3’s field of view. Range: 0°C to 59°C
(32°F to 138°F).

Internal Temperature Temperature at ceiling height. Range: 0°C to 59°C (32°F to 138°F).

Temperature Setpoint User-entered temperature from mobile app. Measured by user at occupant
height.

Occupancy Audio Retrigger Period The amount of time (in seconds) that activity sounds can cause the hub to
remain in the occupied state after motion is detected. Default value is 1200
seconds (20 minutes). Measured from most recent motion detection event.

Occupancy Inactivity Period The amount of time (in seconds) it takes the O3 to return to the unoccupied
state when no motion and no audio activity is detected. Default value is 300
seconds (5 minutes).

Acoustic Occupancy Threshold The acoustic activity level based on the background noise level. Read-only.

Light Level Brightness of ambient light (lx or ft-candle).

Occupant Humidity Humidity at 1 m (3 ft) above floor. This is calculated from the occupant
temperature and internal humidity using psychrometrics. Range: 0% to
100%.

Occupancy Combined (motion + sound) occupancy signal. Active state when motion and
sound is detected. See How Occupancy Works for more details.

Motion Sensor Motion occupancy signal. Active state when motion is detected.

Acoustic Occupancy Acoustic occupancy signal. Active state when acoustic activity level (AI10) is
above the internal acoustic occupancy threshold (AV38).

Motion Sensitivity Controls the sensitivity of the PIR sensor to changes in movement levels within
the detection area. 100% = maximum sensitivity.

Occupancy Audio Sensitivity Controls the sensitivity of the acoustic occupancy sensor to changes in audio
levels within the detection area. 100% = maximum sensitivity.

Sound Level Level of ambient noise (dB SPL). Unfiltered audio level across the entire
spectrum.

Light Level Setpoint (Optional) User-entered light level from mobile app. Records the light level
read by the hub (AI12) when the lighting in the space is set to the desired
brightness. This setpoint can be retrieved later by the control system to set the
feedback loop, etc.

https://deltacontrols.com/wp-content/uploads/BACnet-Application-Guide-1-1.pdf

Page 17 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

To identify the data points on the O3 follow the instructions in Using IoTWorX, Section 3.2.2, Add
multiple devices through a network scan. When this step is complete, your configuration in Workbench
should look like this:

Figure 11 Devices and objects discovered on the O3

Page 18 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

 Create a publish list
For this test installation, enter Delta O3 Publist for the name of the Publish List and select the points
listed above. When this step is complete, your publish list configuration in ICONICS Workbench should
look like this:

Figure 12 Publish List with selected objects of interest

It is useful to enter a Publish Name manually in the Publish Name column, as that will make it easier to
parse the data in Azure later.

 Create a custom encoder
For this setup, create a custom encoder called CustomJSONEncoder.
In the General Settings section, select One value for each message for the Message Type.
In the Value Format enter:

When this step is complete, your configuration in Workbench should look like this:

{
 "id": "%PUBLISHNAME%",
 "v": "%VALUE%",
 "q": "%STATUS.GOOD%",
 "t": "%NOWUTC.TEXT%"
}

Page 19 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 13 Custom encoder

 Create a publisher connection
For this setup, enter To_CentralHub for the name of the Publisher Connection.
Uncheck the Enable compatibility checkbox.
For the Encoder, enter CustomJSONEncoder.
For the Publish List, enter Delta O3 PubList.
For the Connection String enter the Device primary connection string noted in Section 3.2 above.

When this step is complete, your configuration in Workbench should look like this:

Figure 14 Publisher Connection

After you create and save the Publisher Connection, click the button in the top menu bar to start or
restart the Publisher Service. At this point, data should start flowing to Azure IoT Hub, which you can
confirm first by locally viewing the data being sent by IoTWorX and then by viewing the data received at
the hub.

Page 20 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

 Viewing data sent by IoTWorX
To visualize the data being sent by IoTWorX, launch the Data Explorer application in the ICONICS Tools
folder in the computer’s Start Menu. Navigate to My Computer  Data Connectivity  BACnet  O3
Hub 2 and click on Occupant Temperature. You should see a Present Value for the temperature:

Figure 15: Viewing data collected by IoTWorX using ICONICS Data Explorer on the gateway machine

 Viewing data received by IoT Hub
See Install and use Azure IoT explorer for step-by-step instructions for
using the Azure IoT explorer tool to monitor incoming data. Upon launching Azure IoT Explorer, enter
the IoT Hub primary connection string noted in Section 3.2 above.

If IoTWorX and IoT Hub are configured as described in this article, after navigating to centralhub 
Devices  IoTWorX  Telemetry and clicking Start, data should be seen in the main window:

Figure 16: Viewing data received by IoT Hub

In this screen capture we see again the value of the Occupant Temperature collected by the O3 Sense,
this time as it is received at the IoT Hub.

https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer

Page 21 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

6 Routing data from IoT Hub to Event Hub
Typically, you would have many devices send data to the same IoT Hub, so we need a way to filter the
incoming data for that from just the O3.

 Creating a filter for the data
First, we need to create an attribute on the incoming data by which to filter it. To do this, we add a
property to the Azure device twin for the device as configured in the IoT Hub. In the Azure portal, select
the IoT Hub centralhub and click on IoT devices and select the IoTWorX device. On the IoTWorX device
page, click on Device twin:

Figure 17: Azure IoT Hub Device Twin

On the next screen, note the value of the deviceID. This was automatically created for the Twin when we
created the IoT device was created in IoT Hub:

"deviceId": "IoTWorX"

Note that you can also see this deviceId in IoT Explorer, show in Figure 16: Viewing data received by IoT
Hub, last line. Now we can add tags section with device location if you want to use Device Twin Data
Enrichment functionality. In the portal add the following:

 "tags": {

"deviceBuilding": "4630"
},

So that it looks like this:

Page 22 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 18: Azure IoT Hub Device Twin properties

 Configuring routing and data enrichment
Next, we configure IoT Hub message routing for data with the device twin tag of IoTWorX to the Event
Hub we created earlier. In the Azure portal, select the IoT Hub centralhub and click on Message routing
in the left menu.

In the Enrich messages tab, add a message enrichment with the following parameters:

Parameter Value
Name Enter deviceBuilding.
Value Enter $twin.tags.deviceBuilding.
Endpoint Select iotworx in the dropdown, Event

Hubs section.

Page 23 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

In the portal it should look like this:

Figure 199: Azure IoT Hub Data Enrichment

Next, to add the route we want, we need to create a Custom Endpoint first. Select Custom endpoints
tab and click + Add.

Figure 20: Azure IoT Hub Custom Endpoints

On the next page, select Event Hub namespace and Instance created previously and click Create:

Figure 21: Azure IoT Hub Custom Endpoints creation

Page 24 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Now we are ready to create new Route, select the Routes tab, and click + Add.

Figure20: Message routing

To create the environment used in this example, set the parameters as follows:

Parameter Value
Name Enter iotworxroute.
Endpoint Click the down arrow and select iotworx.
Routing query Enter $twin.deviceId = 'IoTWorX'

 Viewing data received by Event Hub
To monitor the data received from the IoT Hub by the Event Hub, we will use Microsoft Visual Studio.
First download and install Visual Studio Code, then the Azure Event Hub Explorer. Open Visual Studio
Code and follow these steps.

1. Select View  Extensions  Azure Event Hub Explorer.
2. Select View  Command Palette  Event Hub: Select Event Hub

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Summer.azure-event-hub-explorer

Page 25 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 21: Select Event Hub

3. From the drop-down select subscription Subscription-1.
4. From the drop-down select resource group iotprojects.
5. From the drop-down select event hub namespace centralhubs.
6. From the drop-down select event hub iotworx.
7. From the top menu select View  Command Palette  Event Hub: Start monitoring.

Figure 202: Start monitoring Event Hub

At this point, data should start appearing:

Page 26 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 213: Data arriving in Event Hub

In this screen capture we see again the value of the Occupant_temperature collected by the O3, this
time it is received at the Event Hub.

7 Configuring an Azure Function to push
data from Event Hub to SQL Server

There are multiple ways to write the streaming data to SQL Server. In a previous whitepaper, Monitoring
Building Air Quality, we describe the steps to do this from IoT Hub with an Azure Stream Analytics job. In
the section below we show how to do this from the Event Hub created above in a more cost-efficient
manner using an Azure Function, though this way is more complex to set up and requires some coding
skills.

 Creating the Function App
In the Azure portal select + Create a resource and select the Function App category. To create the
environment used in this example, on the Basics page set the parameters as follows:

https://iconics.com/Documents/Whitepapers/Monitoring-Building-Air-Quality
https://iconics.com/Documents/Whitepapers/Monitoring-Building-Air-Quality

Page 27 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Setting Value
Subscription Enter your Azure IoT subscription name. In our example, this is Subscription-1.
Resource Group Enter IoT_projects.
Function App name Enter DataEnrichmentCS.
Publish Select Code.
Runtime stack Select .NET
Version Select 3.1.
Region Select the region where you have created the IoT Hub. In our example, this is East US.

Select Next : Hosting. On the Hosting page, accept the defaults.

Select Next : Monitoring. On the Monitoring page, turn off Application Insights.

Select Review + Create, then Create to deploy the function app.

 Specifying configuration values
When the deployment is complete, select Go To Resource. From the left menu select Configuration,
then select + New application setting in the right-hand pane. Add the following:

Name Value
ConnectionString Enter the connection string for the SQL Server database iot, noted above. Edit to

include the password you selected for the SQL Server.

We will use this variable in the function we are about to create.

 Creating the Function

Next, we create a function. When the deployment is complete, select Go To Resource. From the left
menu select Functions, then select + Add from the top menu. In the Add Function window, set the
parameters as follows:

 Setting Value
Develop environment Select Develop in portal.
Template Select Azure Event Hub trigger.
New Function Enter IoTWorXToSQL
Event Hub connection Select recently created EventHub connection from the list (not IoT Hub

EventHub endpoint)
Event Hub name Enter iotworx.
Event Hub consumer group Enter tosql

Page 28 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Click Add to create the function. Once created, click on IoTWorXToSQL in the list on the right to open the
function page. Click Code + Test in the left menu, select run.csx in the drop-down at the top and replace
the code in the window with the following and click Save (formatting below modified to fit to page).

#r "System.Data.Common"

#r "Microsoft.Azure.EventHubs"

#r "Newtonsoft.Json"

using System;

using System.Text;

using System.Data;

using System.Data.SqlClient;

using Microsoft.Azure.EventHubs;

using Newtonsoft.Json;

public static async Task Run(EventData[] events, ILogger log)

{

 var exceptions = new List<Exception>();

 string cs = Environment.GetEnvironmentVariable("ConnectionString");

 if(string.IsNullOrEmpty(cs)) {

 log.LogError("DB Connection string is not defined!");

 }

(Continued on next page)

Page 29 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

 foreach (EventData eventData in events)

 {

 try

 {

 string messageBody = Encoding.UTF8.GetString(eventData.Body.Array, eventData.Body.Offset, eventData.Body.Count);

 Message m = JsonConvert.DeserializeObject<Message>(messageBody);

 var deviceBuilding = "UnknownBuilding";

 if(eventData.Properties.ContainsKey("deviceBuilding")){

 deviceBuilding = eventData.Properties["deviceBuilding"].ToString();

 }

 log.LogInformation($"device Building is: {deviceBuilding}");

 var insertScript = $"INSERT INTO [dbo].[Telemetry] ([Building],[Parameter],[Value],[TimeStamp]) VALUES (@Building,

@Parameter, @Value, @Date)";

 using (SqlConnection connection = new SqlConnection(cs))

 {

 SqlCommand command = new SqlCommand(insertScript, connection);

 command.Parameters.AddWithValue("@Building", deviceBuilding);

 command.Parameters.AddWithValue("@Parameter", m.id);

 command.Parameters.AddWithValue("@Value", m.v);

 command.Parameters.AddWithValue("@Date", m.t);

 try{

 connection.Open();

 var rows = command.ExecuteNonQuery();

 }

 catch(Exception ex){

 log.LogError(ex.Message);

 }

 }

 log.LogInformation($"C# Event Hub trigger function processed a message: {messageBody}");

 await Task.Yield();

 }

 catch (Exception e)

 {

 exceptions.Add(e);

 }

 }

 if (exceptions.Count > 1) throw new AggregateException(exceptions);

 if (exceptions.Count == 1) throw exceptions.Single();

}

public class Message{

 public string id {get;set;}

 public double v {get;set;}

 public DateTime t {get; set;}

}

Page 30 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Finally, select function.json in the drop-down at the top. It should look like this:

Note that the configuration file specifies iotworx, the Event Hub from which the function will read data.

The IoTWorXToSQL function is called every time a message or a batch of messages arrives at the iotworx
Event Hub and inserted into the Telemetry table of the SQL database. Briefly the code above works as
follows:

Line starting Function
string cs = Identifies the SQL database iot, getting it from upon the variable

ConnectionString noted in Section 3.4 above.
Message m = Identifies the IoT Hub centralhub, getting it from function.json
var insertScript = Writes a record to the SQL database, mapping the attributes in the

records arriving at the IoT Hub to the fields in the SQL table
public class Message{ Identifies the attributes of the record arriving at the Event Hub

 Viewing data received by SQL Server
To verify that the function is working correctly launch SQL Server Management Studio on your desktop,
connect to iothome, right click on the iot database, and select New Query. Enter and execute the
following query to see the data pushed to SQL Server:

SELECT * FROM [dbo].[Telemetry] order by TimeStamp desc

The results in SSMS:

{

 "bindings": [

 {

 "name": "events",

 "connection": "centralhubs_RootManageSharedAccessKey_EVENTHUB2",

 "eventHubName": "iotworx",

 "consumerGroup": "tosql",

 "cardinality": "many",

 "direction": "in",

 "type": "eventHubTrigger"

 }

]

}

Page 31 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 22: SQL Server Telemetry listing

Note that each record is from a single message from the O3, for example a record for
Occupant_Temperature, a record for Light_level. We can also display all the records at a specific time by
executing the SQL view we created earlier. Right click on the iot database and select New Query. Enter
and execute the following query to see the data in the view:

SELECT * FROM [dbo].[v_O3_Pivot] order by TimeStamp desc

The results in SSMS:

Figure 23: SQL view

Note here that all the values collected by the O3 at a specific time are stored in a single record. This will
make it easier to use analysis tools to display the data.

Page 32 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

8 Alternative: push data from Event Hub to
Azure Table Storage

If you do not need the functionality and power of SQL Server, a cost-effective alternative is to push the
data to Azure Table Storage. To do this, we use a function like that used above. Follow the steps in
Sections 7.1 and 7.2 above, and then continue as follows.

 Creating the Function

Next, we create a function. When the deployment is complete, select Go To Resource. From the left
menu select Functions, then select + Add from the top menu. In the Add Function window, set the
parameters as follows:

Click Add to create the function. Once created, click on EventHubToTable in the list on the right to open
the function page. Click Integration, to bring up the wire frame:

Figure 24: Integration

Click on + Add output, and enter the following values:

Setting Value
Develop environment Select Develop in portal.
Template Select Azure Event Hub trigger.
New Function Enter EventHubToTable
Event Hub connection Select centralhub_events_IOTHUB
Event Hub consumer group Select totablestorage

Page 33 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

The Edit Output box should look like this:

Click Save to finish the configuration. Next, Click Code + Test in the left menu and select function.json
in the drop-down at the top. The JSON should contain the information from the Create Function wizard
and the Create Output wizard:

Setting Value
Binding Type Select Azure Table Storage.
Table parameter name Enter outputTable.
Table name Enter Telemetry.
Storage account connection Select storageaccountiotpr96cc_STORAGE

Figure 25: Edit output

Page 34 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Note that the input ("direction": "in") specifies iotworx, the Event Hub from which the function will read
data and the output ("direction": "out") specifies Telemetry, the storage table to which the function will
write the data.

Next, select run.csx in the drop-down at the top, and replace the code in the window with the following
and click Save (formatting below modified to fit to page):

{

 "bindings": [

 {

 "type": "eventHubTrigger",

 "name": "events",

 "direction": "in",

 "eventHubName": "iotworx",

 "cardinality": "many",

 "connection": "centralhubs_RootManageSharedAccessKey_EVENTHUB3",

 "consumerGroup": "totablestorage"

 },

 {

 "name": "outputTable",

 "direction": "out",

 "type": "table",

 "tableName": "Telemetry",

 "connection": "storageaccountiotpr96cc_STORAGE"

 }

]

}

Figure 26: Function.JSON for EventHubToTable function

Page 35 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

#r "Microsoft.Azure.EventHubs"

#r "Newtonsoft.Json"

using System;

using System.Text;

using Microsoft.Azure.EventHubs;

using Newtonsoft.Json;

public static async Task Run(EventData[] events, ICollector<TelemetryItem> outputTable, ILogger log)

{

 var exceptions = new List<Exception>();

 foreach (EventData eventData in events)

 {

 try

 {

 string messageBody = Encoding.UTF8.GetString(eventData.Body.Array, eventData.Body.Offset,

eventData.Body.Count);

 Message m = JsonConvert.DeserializeObject<Message>(messageBody);

 log.LogInformation($"C# Event Hub trigger function processed a message: {messageBody}");

 DateTimeOffset offsetDate = new DateTimeOffset(m.t);

 long unixTimeStamp = offsetDate.ToUnixTimeSeconds();

 outputTable.Add(

 new TelemetryItem(){

 PartitionKey = $"PugetSound-WestCampus-SpyrosLab-{m.id}",

 RowKey = unixTimeStamp.ToString(),

 id = m.id,

 v = m.v,

 t = m.t

 }

);

 await Task.Yield();

 }

 catch (Exception e)

 {

 // We need to keep processing the rest of the batch - capture this exception and continue.

 // Also, consider capturing details of the message that failed processing so it can be processed

 // again later.

 exceptions.Add(e);

 }

 }

(Continued on next page)

Page 36 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

 Viewing data received by Azure Table Storage
To verify that the function is working correctly, from the Azure portal select storageaccountiotpr96cc,
then from the left menu select Storage Explorer (preview)  TABLES  Telemetry. This should show
data in the Telemetry table specified in Function.json:

Figure 27: Storage Explorer showing data in Telemetry table

If you have applications which can access Azure Table Storage and you do not need the functionality and
scale provided by SQL Server, this is a more cost-efficient method to capture the data.

 // Once processing of the batch is complete, if any messages in the batch failed processing throw an

 // exception so that there is a record of the failure.

 if (exceptions.Count > 1)

 throw new AggregateException(exceptions);

 if (exceptions.Count == 1)

 throw exceptions.Single();

}

public class Message{

 public string id {get;set;}

 public double v {get;set;}

 public DateTime t {get; set;}

}

public class TelemetryItem : Message{

 public string PartitionKey {get; set;}

 public string RowKey {get; set;}

}

Page 37 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

9 Creating a Power BI application to display
the data

Once you have the data in SQL or in Table Storage, you can build an Azure dashboard to display the data
in real time. It is beyond the scope of this paper to describe this in detail, but the basic steps on one way
to do this are as described below. You may need assistance from an IT/ICT professional familiar with SQL
and Power BI to complete these steps.

Here is an example of a Power BI report pulling the data from the SQL table:

Figure 28 PowerBI.com report

To create such a dashboard, you would use the free Power BI desktop application, and do the following:

1. Specify the connection string for the SQL database and table, noted in Section 3.4 above.
2. Specify the query against the database.
3. Specify the chart type (on the right in the image we have some Line Charts, on the left some

examples of a third-party Power BI gauge widget downloaded from the store).
4. Specify the axes.
5. Add any text or JPG.

https://powerbi.microsoft.com/en-us/desktop/

Page 38 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

6. Publish the chart to http://powerbi.com.
7. Share the workspace to authorized users.

There are multiple tutorials on the Internet on setting up Power BI dashboards and reports, which you
can find easily with a simple search.

10 Using GENESIS64 as a no code client
ICONICS GENESIS64 can be used as a no code client to the published O3 Sense data. To do so, the
following configuration needs to be setup in an Azure virtual machine with GENESIS64 installed.

Start by deploying the latest version of ICONICS Suite VM offer from the Azure Marketplace.
As of this writing, the latest version of ICONICS Suite is version 10.97, available here:
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/iconics.iconics-suite-
1097?tab=Overview

 Create a custom encoder
To decode the published O3 data, we must first setup the custom encoder that instructs GENESIS64 how
to understand the published data.

To set this up, in Workbench  Internet of Things, right click on Custom Encoders/Decoders, choose
Add Encoder/Decoder, and create a custom encoder like in Section 5.4 above, name it as “Delta O3
Encoder” and define the Value Format as follows:

When this step is complete, your configuration in Workbench should look like this:

{
 "id": "%PUBLISHNAME%",
 "v": "%VALUE%",
 "q": "%STATUS.GOOD%",
 "t": "%NOWUTC.TEXT%"
}

http://powerbi.com/
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/iconics.iconics-suite-1097?tab=Overview
https://azuremarketplace.microsoft.com/en-us/marketplace/apps/iconics.iconics-suite-1097?tab=Overview

Page 39 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Figure 29: Encoder

 Create a subscriber connection
To start receiving published data from the O3, we have first to subscribe to the IoT Hub with a
subscriber connection.

To set this up, in Workbench  Internet of Things, right click on Subscriber Connections, choose Add
Subscriber Connection, and give the subscriber connection a name, for example Delta_O3_Hub.

Set up the general settings of the subscriber connection as shown below:

Figure 10 Subscriber Connection General Settings

Leave the Datasets Support section with default values.

In the IoT Hub Settings section, enter the appropriate connection strings from section 3.2. Click Apply to
save the configuration and start the Subscriber service.

Page 40 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

 Visualize and interact with published data
To visualize data from the subscribed IoT Hub, start the Data Explorer application and browse under the
My Computer  Internet of Things branch like that shown in Figure 12:

Figure 12 Browsing for published data

Select the desired published data point and you should see the data values in a table to the right like
that shown in Figure 13:

Figure 13 Published data values

The frequency of data updates and availability will be dependent on the publish rate set on the IoTWorX
gateway.

 Organizing data with ICONICS AssetWorX
AssetWorX is a digital twins module in the ICONICS Suite. Data received from IoTWorX can easily be
organized into a logical structure and extended with history, alarms, and faults.

By leveraging features like equipment classes, a template for the Delta O3 can be defined and used to
deploy multiple instances of the device in bulk.

Page 41 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

Learn about AssetWorX on the ICONICS Institute here: https://iconics.com/Resources/ICONICS-
Institute/Units/Asset-Organization

 Create an IoT dashboard
An engaging and dynamic IoT dashboard can easily be created with ICONICS’ visualization capabilities.
Here is an example of such a dashboard:

Figure 30 ICONICS IoT Dashboard

https://iconics.com/Resources/ICONICS-Institute/Units/Asset-Organization
https://iconics.com/Resources/ICONICS-Institute/Units/Asset-Organization

Page 42 © 2021, Microsoft Corporation, Delta Controls, Inc.
and ICONICS, Inc. All rights reserved

11 Next steps
If you have successfully completed the above steps you have an end-to-end example of remotely
monitoring the Delta O3 Sense. With the available data, more sophisticated environment monitoring
solutions can be built.

	1 Introduction
	2 Infrastructure overview
	2.1 On-premises infrastructure
	2.2 Cloud infrastructure

	3 Configuring Azure prerequisites
	3.1 Azure Resource Group
	3.2 Azure IoT Hub
	3.3 Event Hub
	3.4 Azure SQL Server
	3.5 VM based SQL Server

	4 Configuring the O3 Sense
	5 Configuring ICONICS IoTWorX to push data from the O3 Sense to Azure
	5.1 Specify how to access the O3
	5.2 Discover devices
	5.3 Create a publish list
	5.4 Create a custom encoder
	5.5 Create a publisher connection
	5.6 Viewing data sent by IoTWorX
	5.7 Viewing data received by IoT Hub

	6 Routing data from IoT Hub to Event Hub
	6.1 Creating a filter for the data
	6.2 Configuring routing and data enrichment
	6.3 Viewing data received by Event Hub

	7 Configuring an Azure Function to push data from Event Hub to SQL Server
	7.1 Creating the Function App
	7.2 Specifying configuration values
	7.3 Creating the Function
	7.4 Viewing data received by SQL Server

	8 Alternative: push data from Event Hub to Azure Table Storage
	8.1 Creating the Function
	8.2 Viewing data received by Azure Table Storage

	9 Creating a Power BI application to display the data
	10 Using GENESIS64 as a no code client
	10.1 Create a custom encoder
	10.2 Create a subscriber connection
	10.3 Visualize and interact with published data
	10.4 Organizing data with ICONICS AssetWorX
	10.5 Create an IoT dashboard

	11 Next steps

