

# Measuring Occupancy with Delta Controls O3 Sense, Azure IoT, and ICONICS

# Contents

| 1 | Intro | roduction5                                                           |    |  |  |
|---|-------|----------------------------------------------------------------------|----|--|--|
| 2 | Infra | astructure overview                                                  | 5  |  |  |
|   | 2.1   | On-premises infrastructure                                           | 5  |  |  |
|   | 2.2   | Cloud infrastructure                                                 | 6  |  |  |
| 3 | Con   | figuring Azure prerequisites                                         | 6  |  |  |
|   | 3.1   | Azure Resource Group                                                 | 6  |  |  |
|   | 3.2   | Azure loT Hub                                                        | 7  |  |  |
|   | 3.3   | Event Hub                                                            | 8  |  |  |
|   | 3.4   | Azure SQL Server                                                     | 8  |  |  |
|   | 3.5   | VM based SQL Server                                                  | 12 |  |  |
| 4 | Con   | figuring the O3 Sense                                                | 12 |  |  |
| 5 | Con   | figuring ICONICS IoTWorX to push data from the O3 Sense to Azure     | 15 |  |  |
|   | 5.1   | Specify how to access the O3                                         | 15 |  |  |
|   | 5.2   | Discover devices                                                     | 16 |  |  |
|   | 5.3   | Create a publish list                                                | 18 |  |  |
|   | 5.4   | Create a custom encoder                                              | 18 |  |  |
|   | 5.5   | Create a publisher connection                                        | 19 |  |  |
|   | 5.6   | Viewing data sent by IoTWorX                                         | 20 |  |  |
|   | 5.7   | Viewing data received by IoT Hub                                     | 20 |  |  |
| 6 | Rou   | ting data from IoT Hub to Event Hub                                  | 21 |  |  |
|   | 6.1   | Creating a filter for the data                                       | 21 |  |  |
|   | 6.2   | Configuring routing and data enrichment                              | 22 |  |  |
|   | 6.3   | Viewing data received by Event Hub                                   | 24 |  |  |
| 7 | Con   | figuring an Azure Function to push data from Event Hub to SQL Server | 26 |  |  |
|   | 7.1   | Creating the Function App                                            | 26 |  |  |
|   | 7.2   | Specifying configuration values                                      | 27 |  |  |
|   | 7.3   | Creating the Function                                                | 27 |  |  |
|   | 7.4   | Viewing data received by SQL Server                                  | 30 |  |  |
| 8 | Alte  | rnative: push data from Event Hub to Azure Table Storage             | 32 |  |  |
|   | 8.1   | Creating the Function                                                | 32 |  |  |
|   | 8.2   | Viewing data received by Azure Table Storage                         | 36 |  |  |
| 9 | Crea  | ating a Power BI application to display the data                     | 37 |  |  |

| 10 l | Jsing GENESIS64 as a no code client        | .38  |
|------|--------------------------------------------|------|
| 10.1 | Create a custom encoder                    | . 38 |
| 10.2 | Create a subscriber connection             | . 39 |
| 10.3 | Visualize and interact with published data | .40  |
| 10.4 | Organizing data with ICONICS AssetWorX     | .40  |
| 10.5 | Create an IoT dashboard                    | .41  |
| 11 N | lext steps                                 | .42  |

# Copyright and Confidentiality

By accessing and using the installation instructions (the "instructions") you acknowledge and agree, on your behalf and on behalf of the person, entity or other organization on whose behalf you are accessing the instructions, that neither Microsoft, ICONICS, Delta Controls, nor any of its service providers, including, without limitation, any system integrator or independent software vendor: (1) makes any representations or warranties of any kind, either express, implied, statuary or otherwise with respect to the instructions, including the accuracy, completeness or usefulness thereof; and (2) shall be liable for damages of any kind, under any legal theory, arising out of or in connection with your election to follow or use, or inability to follow or use, the instructions, including any direct, indirect, incidental, special, punitive or consequential damages, or for loss of use, loss of profits, loss of data, loss of business, or loss of privacy or security, even if foreseeable, arising out of or in connection with your election to follow or use, or inability to follow or use, the instructions. You further acknowledge and agree that your use of the instructions, whether directly or indirectly, is at your own risk and that you expressly assume all risk in connection with your use of the instructions. If you do not agree to the foregoing, you may not access or use the instructions.

Copyright © 2021, Microsoft Corporation, Delta Controls, Inc. and ICONICS, Inc. All rights reserved.

# Authors

- <u>Spyros Sakellariadis</u>, Microsoft Corporation
- <u>Maksym Mushkin</u>, Microsoft Corporation
- Zhi Wei Li, Director of Innovation & Incubation Solutions, ICONICS
- <u>Gamal Mustapha</u>, Director of Product Management, Delta Controls Inc.

# 1 Introduction

Monitoring the occupancy of spaces in commercial buildings and spaces has many benefits. Obvious scenarios include security, safety, and energy conservation – is there someone in the building when it is supposed to be empty, is there someone on a construction site when it is not safe, or is a room being heated when it is not in use? This document is being written during the coronavirus pandemic, and monitoring occupancy has taken on an additional importance. Which spaces in an office building are occupied and will need to be sanitized after the occupants leave?

Monitoring occupancy poses a couple of technical challenges which need to be overcome. First, detecting the presence of someone in a space can be done using motion, audio, heat, or visual sensors, but on their own each are subject to false readings – is the motion due to the wind, or a cat, is the heat due to a portable heater or is the occupant present but not moving. Second, just detecting the presence of someone is not adequate, as you need that information to be analyzed and appropriate action taken.

In the following sections we describe using an occupancy sensing solution from <u>Delta Controls</u> connected to the Microsoft Azure cloud and using a couple of different technologies from <u>Microsoft</u> and <u>ICONICS</u> to analyze the data.

# 2 Infrastructure overview

# 2.1 On-premises infrastructure

In the setup described in this paper, we are using a <u>Delta Controls O3<sup>™</sup> Sense</u> to monitor room occupancy with a combination of temperature, humidity, motion, sound, and light sensors. It has a hardwired connection to a Windows 10 computer and communicates over BACnet/IP with an <u>ICONICS</u> <u>IoTWorX</u> application running on that computer. In turn, the IoTWorX application communicates over the Internet to applications in the <u>Microsoft Azure</u> cloud. The physical configuration is shown in Figure 1:

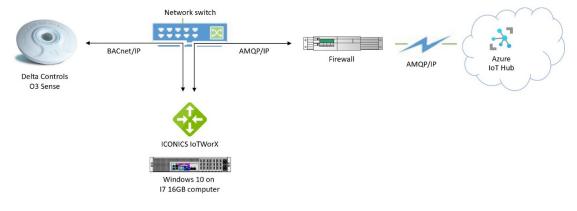



Figure 1 Physical Layout

In this configuration we use IoTWorX to read and write values from and to the O3 Sense. Specifically, we configure IoTWorX to perform the following functions:

- 1. Connect to the O3 Sense via BACnet
- 2. Request values of certain objects on the O3 every minute.
- 3. Reformat the data into a prescribed format .
- 4. Transmit that data to Azure IoT Hub.

# 2.2 Cloud infrastructure

After the data arrives in Azure IoT Hub, we use Azure IoT Hub Message Routing to route the data to an Event Hub based upon the origin and type of data. We then use an Azure Function to read the incoming data stream and write it to a SQL database, and use Power BI to display the current value and historical trends. Finally, we also use modules of ICONICS GENESIS64 to analyze and display the data. The overall flow is shown in Figure 2:

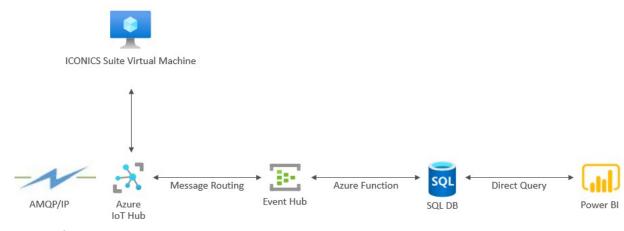



Figure 2 Software components

The following sections contain a description of how to configure the IoTWorX gateway and the Azure components to monitor the occupancy and other elements detected by the O3 Sense.

# 3 Configuring Azure prerequisites

# 3.1 Azure Resource Group

This article assumes the reader has basic knowledge of Microsoft cloud products and services and understands how to create and configure resources. Consequently, only descriptions or diagrams of the final configuration will be included, not step-by-step instructions.

The example described here uses various Azure services, deployed in a single resource group shown below. We called the resource group **IoT\_projects** when creating this configuration. The final set of services looked like the following:

|                        |                                                                                     |                                    |                              | ~ •                              |        |
|------------------------|-------------------------------------------------------------------------------------|------------------------------------|------------------------------|----------------------------------|--------|
|                        | ps://portal.azure.com/************************************                          |                                    | £_≡                          | @                                |        |
| Microsoft Azure 🔑 Sea  | rch resources, services, and docs (G+/)                                             | E 🕼 🖓                              | ැලි ? 😳 spyr<br>Microsoft (S | os@spyros.cor<br>spyrosspyros.on | m<br>( |
| me > Resource groups > |                                                                                     |                                    |                              |                                  |        |
| 👩 loT_projects 🦻       | ¢                                                                                   |                                    |                              |                                  | >      |
| Resource group         |                                                                                     |                                    |                              |                                  |        |
| Search (Ctrl+/)        | $\ll$ + Add $\equiv\equiv$ Edit columns in Delete resource group $\bigcirc$ Refresh | 🛓 Export to CSV 😚 Open query 🛛 🖉 / | Assign tags 💛 Move 🗸 📋 D     | elete ···                        |        |
| () Overview            | <ul> <li>Essentials</li> </ul>                                                      |                                    |                              | JSON Vi                          | ſie    |
| Activity log           | Filter for any field Type == all X Location == all X                                | + Add filter                       |                              |                                  |        |
| Access control (IAM)   | Showing 1 to 18 of 18 records. Show hidden types ①                                  | No gro                             | uping V List vie             | 2007                             | ,      |
| 🔷 Tags                 |                                                                                     |                                    |                              | ew                               | -      |
| 🗲 Events               | Name ↑↓                                                                             | Туре ↑↓                            | Location ↑↓                  |                                  |        |
| Settings               | Centralhub                                                                          | IoT Hub                            | East US                      |                                  |        |
| Deployments            | centralhubDPS                                                                       | Device Provisioning Service        | East US                      |                                  |        |
|                        | E centralhubs                                                                       | Event Hubs Namespace               | East US                      |                                  |        |
| 🤨 Security             | DataEnrichmentCS                                                                    | Function App                       | East US                      |                                  |        |
| Policies               | DataEnrichmentCScopy                                                                | Application Insights               | East US                      |                                  |        |
| Properties             | 🔲 📓 iot (iothome/iot)                                                               | SQL database                       | East US                      |                                  |        |
| 🔒 Locks                | IoT-TSI-Environment                                                                 | Time Series Insights environment   | East US                      |                                  |        |
| Cost Management        | 🗌 🔤, iothome                                                                        | SQL server                         | East US                      |                                  |        |
| 🔍 Cost analysis        | SimpleDataEnrichment                                                                | Function App                       | East US                      |                                  |        |
| Cost alerts (preview)  | CalvaRivees1245476                                                                  | Storana account                    | Fact IIS                     |                                  |        |
| Budgets                | < Previous Page 1 v of 1 Next >                                                     |                                    |                              |                                  |        |
|                        |                                                                                     |                                    |                              |                                  |        |

Figure 3: Azure Resource Group

The key services we will use in this solution are the following:

| Resource         | Туре          | Function                               |
|------------------|---------------|----------------------------------------|
| centralhub       | Azure IoT Hub | Receive data from the O3 Sense         |
| iot              | SQL database  | Store data received from the O3 Sense  |
| iothome          | SQL server    | Holds SQL database                     |
| DataEnrichmentCS | Function App  | Writes data from IoT Hub to SQL Server |

# 3.2 Azure IoT Hub

The first task after creating the empty resource group is to create an Azure IoT Hub to receive the data from the O3 Sense. In the Azure portal select **+ Create a resource**, select the **Internet of Things** category, and click on **IoT Hub**. To create the environment used in this example, set the parameters as follows:

| Settings       | Value                                                                                   |
|----------------|-----------------------------------------------------------------------------------------|
| Subscription   | Enter your Azure IoT subscription name. In our example, this is <b>Subscription-1</b> . |
| Resource Group | Enter <b>IoT_projects</b> .                                                             |
| Region         | Select the region where you have created the IoT Hub. In our example, this is East US.  |
| IoT Hub Name   | Enter <b>centralhub.</b>                                                                |

Next, select the **Built-in endpoints** category, and create a couple of consumer groups for use by different readers of the data:

- Delta1
- Delta2

Next, from the left menu select **IoT Devices**, then select **+ New** at the top of the page to create a new device. Add the following:

| Name      | Value                  |
|-----------|------------------------|
| Device ID | Enter <b>IoTWorX</b> . |

Finally, note the following parameters for the IoT Hub, which will be needed later:

| Parameter                         | Value                                     |
|-----------------------------------|-------------------------------------------|
| Host name                         | From Overview tab                         |
| IoT Hub primary connection string | From Shared Access policies à iothubowner |
| Device primary connection string  | From IoT devices à IoTWorX                |

### 3.3 Event Hub

Next, we need an Event Hub to which we will route a subset of the data coming into IoT Hub. In the Azure portal select + Create a resource, enter Event Hubs in the search category, click on Event Hubs and Create. To create the environment used in this example, set the parameters as follows:

| Settings       | Value                                                                                          |  |  |
|----------------|------------------------------------------------------------------------------------------------|--|--|
| Subscription   | Enter your Azure IoT subscription name. In our example, this is <b>Subscription-1</b> .        |  |  |
| Resource Group | Enter <b>IoT_projects</b> .                                                                    |  |  |
| Namespace name | Enter <b>centralhubs</b>                                                                       |  |  |
| Location       | Select the region where you have created the IoT Hub. In our example, this is <b>East US</b> . |  |  |
| Pricing tier   | Select Standard. Do not select Basic, as Basic allows only one consumer group and we           |  |  |
|                | need two in order to use Visual Studio to view data coming into the Event Hub.                 |  |  |

Click **Review + create.** Once the Event Hub is created, go to the resource. From the left menu, select **Event Hubs** and click **+ Event Hub** at the top of the page. To create the environment used in this example, set the parameters as follows:

| Settings | Value                  |
|----------|------------------------|
| Name     | Enter <b>iotworx</b> . |

#### 3.4 Azure SQL Server

Prior to installing the on-premises components, we also created a SQL database and tables to store the data. In the Azure portal select + **Create a resource** and select the **SQL Database** category to bring up the **Create SQL Database** page. To create the environment used in this example, set the parameters as follows:

| Azure Service | Value                               |  |  |
|---------------|-------------------------------------|--|--|
| SQL Server    | Enter iothome.database.windows.net. |  |  |
| SQL Database  | Enter <b>iot</b> .                  |  |  |

The completed deployment is shown here:

| 🐒 iothome - Microsoft Azure 🛛 🗙 | +                                 |                                      |                                     |                                              | —           |        |
|---------------------------------|-----------------------------------|--------------------------------------|-------------------------------------|----------------------------------------------|-------------|--------|
|                                 | os://portal.azure.com/*****       | ************************************ | ******                              |                                              | ć= 🕀 🌗      | •      |
| ≡ Microsoft Azure 🔎 Seat        | rch resources, services, and docs | (G+/)                                |                                     | ₽ 🖓 @ ? ©                                    |             | (      |
| Home > IoT_projects >           |                                   |                                      |                                     |                                              |             |        |
| sQL server ☆ …                  |                                   |                                      |                                     |                                              |             | >      |
|                                 | + Create database $+$             | New elastic pool + New dedicated     | SQL pool (formerly SQL DW) 🞍 Import | database 🖉 Reset password $\rightarrow$ Move | ∨ 📋 Delete  |        |
| Overview                        |                                   |                                      |                                     |                                              |             |        |
| Activity log                    | Available resources               |                                      |                                     |                                              |             |        |
| Access control (IAM)            | Filter by name                    |                                      | All                                 | types                                        |             | $\sim$ |
| Tags                            | 1 database                        |                                      |                                     |                                              |             |        |
| Diagnose and solve problems     | Name                              | ↑↓ Туре                              | ↑↓ Status                           | ↑↓ Pricing tier                              | ſ           | ,†     |
| Settings                        | SQL database                      |                                      |                                     |                                              |             |        |
| ڬ Quick start                   | iot                               | SQL database                         | Online                              | General Purpose: Gen                         | 5, 2 vCores |        |
| Failover groups                 |                                   |                                      |                                     |                                              |             |        |
| Manage Backups                  |                                   |                                      |                                     |                                              |             |        |
| Active Directory admin          |                                   |                                      |                                     |                                              |             |        |
| SQL databases                   |                                   |                                      |                                     |                                              |             |        |
| SQL elastic pools               |                                   |                                      |                                     |                                              |             |        |
| Deleted databases               |                                   |                                      |                                     |                                              |             |        |
| E Import/Export history         |                                   |                                      |                                     |                                              |             |        |
| 🖻 DTU quota                     |                                   |                                      |                                     |                                              |             |        |
|                                 |                                   |                                      |                                     |                                              |             |        |

Figure 4: SQL Server overview

Next, we need to create the table in the database. On your desktop launch SQL Server Management Studio and select **File**  $\rightarrow$  **Connect Object Explorer**. Enter **iothome.database.windows.net** for the name of the database and enter your SQL authentication credentials. Select the **iot** database, click **New Query**, and run the following query to create a table to hold the data from the O3 Sense.

CREATE TABLE [dbo].[Telemetry]( [Building] [varchar](50) NOT NULL, [Parameter] [varchar](50) NOT NULL, [Value] [float] NULL, [TimeStamp] [datetime] NULL ) ON [PRIMARY] GO

In SQL Server Management Studio:

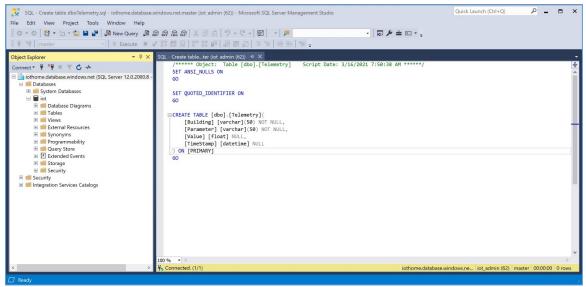



Figure 5: SQL Server Create Table

The **Telemetry** table will hold the data as it comes from the sensor, storing each measurement in a separate record. We also need a way to see all the measurements at a moment in time, which is complicated if each measurement is in a separate record. To do this we create a view. Select the **iot** database, click **New Query**, and run the following query to create the view:

```
CREATE VIEW [dbo].[v_03_Pivot] AS
SELECT *
FROM
  (SELECT *
   FROM
     (SELECT PVTS.*
      FROM
        (SELECT CONVERT(date, TIMESTAMP) AS Date, Building, TimeStamp, [Humidity],
                [Occupant_temperature], [Internal_temperature], [IR_temperature],
                [Temperature_setpoint], [Acoustic_occupancy],
                [Acoustic_occupancy_threshhold], [Audio_retrigger_period],
                [Audio_sensitivity], [Audio_inactivity_period], [Light_level],
                [Light level setpoint], [Motion sensor], [Occupancy], [Sound level],
                [Sound volume]
         FROM
           (SELECT t1.*
            FROM Telemetry t1) AS SourceTable PIVOT(MAX(Value)
            FOR PARAMETER IN([Light_level], [Light_level_setpoint], [Motion_sensor],
                [Sound_level], [Humidity], [Temperature_setpoint],
                [Occupant_Temperature], [Internal_temperature], [IR_temperature],
                [Acoustic_occupancy], [Occupancy], [Sound_volume],
                [Acoustic_occupancy_threshhold], [Audio_retrigger_period],
                [Audio_sensitivity], [Audio_inactivity_period]))
                AS PivotTable) AS PVTS
      WHERE [Building] IS NOT NULL AND [Temperature_setpoint] IS NOT NULL AND
      [Audio_sensitivity] IS NOT NULL) AS PVTSI) AS PVTSIP
GO
```

In SQL Server Management Studio:

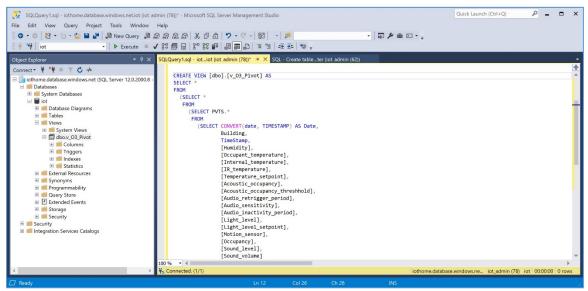



Figure 6: SQL Server Create View

Finally, we need to get the connection string for the database, which we will use later in an Azure Function. In the Azure portal, select the SQL database **iot**. In the left pane, select **Connection strings**. Note the **ADO.NET** connection string.

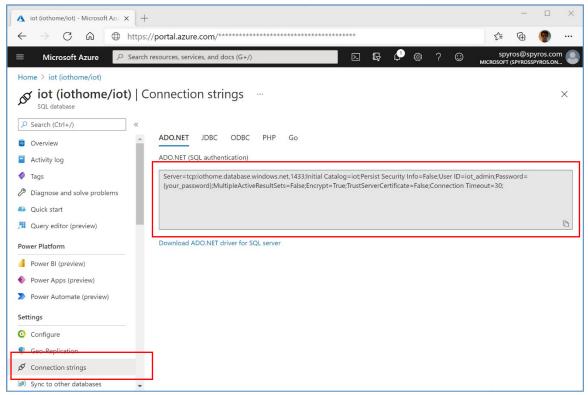



Figure 7: SQL database connection strings

It should look like the following:

| <b>Connection string</b> | Value                                                                    |
|--------------------------|--------------------------------------------------------------------------|
| ADO.NET                  | Server=tcp:iothome.database.windows.net,1433;Initial                     |
|                          | Catalog=iot;Persist Security Info=False;User                             |
|                          | <pre>ID=iot_admin;Password={your_password};MultipleActiveResultSet</pre> |
|                          | s=False;Encrypt=True;TrustServerCertificate=False;Connection             |
|                          | Timeout=30;                                                              |

When the string is needed later, you will need to insert the password created for the database in the place of **[your password]** in the string above.

### 3.5 VM based SQL Server

An alternative is to use a pre-existing SQL server, either local or installed in a VM you already have. In that case, create the database and tables as in the previous section. Once created, construct the connection string that you will need later as follows:

| <b>Connection string</b> | Value                                                                    |
|--------------------------|--------------------------------------------------------------------------|
| ADO.NET                  | Server=tcp:< <b>DNS name of the VM</b> >,1433;Initial                    |
|                          | Catalog=iot;Persist Security Info=False;User                             |
|                          | <pre>ID=iot_admin;Password={your_password};MultipleActiveResultSet</pre> |
|                          | <pre>s=False;Encrypt=True;TrustServerCertificate=True;Connection</pre>   |
|                          | Timeout=30;                                                              |

There are two differences from the connection string used if the SQL Server is an Azure SQL Server. First, the Server name is not the DNS name of the SQL Server, it is the DNS name of the VM. Second, you need to change TrustServerCertificate to True.

# 4 Configuring the O3 Sense

<u>This guide</u> from Delta Controls describes how to install and set up the O3 Sense. To set up the O3, you will need an Android or iOS device with the O3 Setup app installed. You can get the app from Google Play or the App Store.

Key steps to configure the O3 are as follows:

- 1. Open the O3 Setup app and select Continue to enter Lite Mode.
- 2. In the lower right corner of the screen, select Connect.
- 3. Select your O3 to initiate a connection over Bluetooth O3 units are displayed in the order of signal strength.
- 4. Once the connection is initiated, select Verify. The O3 should play a sound and the light ring flashes blue.
- 5. Select *Yes, connect to this hub*. Data loads from the hub and the status changes to Connected.
- 6. You can now view device information and sensor data from the hub in the Diagnostics tab.
- 7. After connecting to the hub, select the Settings tab.

8. By default, the O3 is set to DHCP. If you want to assign a static IP address to the O3, select the pencil icon next to Network, select Static, enter the IP settings, then select Save.

By default, the O3 is set to BACnet Ethernet. If you want to change the protocol to BACnet/IP, select the pencil icon next to BACnet. Select IP, then select Save. The BACnet device ID and UDP port can also be changed if desired.

When finished, the setup app should show a screen like this:

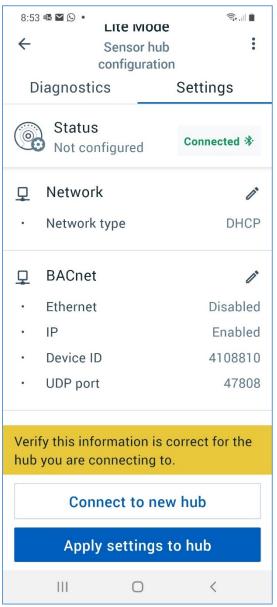



Figure 8: O3 configuration in mobile app

Note the device ID and UDP Port in this app – you will need later. Click **Apply settings to hub**, then click on the **Diagnostics** tab to see additional information:

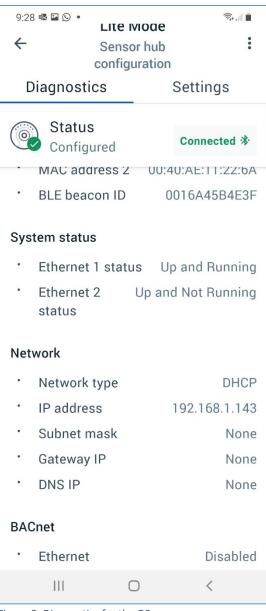



Figure 9: Diagnostics for the O3

Note the IP address – you will need it in the next section.

# 5 Configuring ICONICS IoTWorX to push data from the O3 Sense to Azure

Installing and configuring ICONICS IoTWorX is covered in detail in a previously published document on the ICONICS website, <u>Using IoTWorX as a Gateway</u> (below referred to as *Using IoTWorX*).

Follow the instructions in that document for using ICONICS Workbench, inserting the values shown below instead of those shown in *Using IoTWorX*.

# 5.1 Specify how to access the O3

Follow the instructions in *Using IoTWorX*, Section 3.1 to create an entry for the O3, using the following settings:

| Parameter    | Value                                                  |
|--------------|--------------------------------------------------------|
| Name         | Enter <b>Delta O3</b> .                                |
| Channel Type | Select BACnetIP.                                       |
| IP address   | Enter the IP address from the Diagnostics              |
|              | tab in the O3 mobile app.                              |
| UDP port     | Enter the <b>UDP port</b> from the <b>Settings</b> tab |
|              | in the O3 mobile app.                                  |

Check the **Enabled** checkbox in the **Port Settings** section. When this step is complete, the configuration in ICONICS Workbench should look like that shown below:

| Il Path: MyProject/Data Connectivity/BACnet/Ports [P |                                          |          |
|------------------------------------------------------|------------------------------------------|----------|
| ime: Delta O3                                        |                                          |          |
| Port Foreign Devices                                 | BBMD Devices                             |          |
| Port Settings                                        |                                          |          |
| Description:                                         | Delta Controls O3 device                 |          |
| Channel Type:<br>Network #:                          | BACnetIP                                 | -        |
| UDP Port #:                                          | 47,808 ‡                                 |          |
| Ethernet Settings                                    |                                          | *        |
| Adapter:                                             | Intel(R) Ethernet Connection (10) I219-V | •        |
| IP Settings                                          |                                          | <b>_</b> |
| Enable IP Settings                                   |                                          |          |
| IP Address:                                          | 127.0.0.1                                |          |
|                                                      | 255.255.255.0                            |          |

Figure 10 Port connecting to the O3

# 5.2 Discover devices

The data points collected by the O3 are listed in the following document: <u>BACnet Application Guide</u>. The ones we collect in this article are:

| Name                             | Description                                                                                                                                                                                                                                                    |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Occupant Temperature             | Temperature at 1 m (3 ft) above the floor. This is a composite value derived from the O3's internal temperature sensors and the IR temperature sensor. Range: 0°C to 59°C (32°F to 138°F).                                                                     |
| IR Temperature                   | Average temperature of surfaces in the O3's field of view. Range: 0°C to 59°C (32°F to 138°F).                                                                                                                                                                 |
| Internal Temperature             | Temperature at ceiling height. Range: 0°C to 59°C (32°F to 138°F).                                                                                                                                                                                             |
| Temperature Setpoint             | User-entered temperature from mobile app. Measured by user at occupant height.                                                                                                                                                                                 |
| Occupancy Audio Retrigger Period | The amount of time (in seconds) that activity sounds can cause the hub to remain in the occupied state after motion is detected. Default value is 1200 seconds (20 minutes). Measured from most recent motion detection event.                                 |
| Occupancy Inactivity Period      | The amount of time (in seconds) it takes the O3 to return to the unoccupied state when no motion and no audio activity is detected. Default value is 300 seconds (5 minutes).                                                                                  |
| Acoustic Occupancy Threshold     | The acoustic activity level based on the background noise level. Read-only.                                                                                                                                                                                    |
| Light Level                      | Brightness of ambient light (Ix or ft-candle).                                                                                                                                                                                                                 |
| Occupant Humidity                | Humidity at 1 m (3 ft) above floor. This is calculated from the occupant temperature and internal humidity using psychrometrics. Range: 0% to 100%.                                                                                                            |
| Occupancy                        | Combined (motion + sound) occupancy signal. Active state when motion and sound is detected. See How Occupancy Works for more details.                                                                                                                          |
| Motion Sensor                    | Motion occupancy signal. Active state when motion is detected.                                                                                                                                                                                                 |
| Acoustic Occupancy               | Acoustic occupancy signal. Active state when acoustic activity level (AI10) is above the internal acoustic occupancy threshold (AV38).                                                                                                                         |
| Motion Sensitivity               | Controls the sensitivity of the PIR sensor to changes in movement levels within the detection area. 100% = maximum sensitivity.                                                                                                                                |
| Occupancy Audio Sensitivity      | Controls the sensitivity of the acoustic occupancy sensor to changes in audio levels within the detection area. 100% = maximum sensitivity.                                                                                                                    |
| Sound Level                      | Level of ambient noise (dB SPL). Unfiltered audio level across the entire spectrum.                                                                                                                                                                            |
| Light Level Setpoint             | (Optional) User-entered light level from mobile app. Records the light level read by the hub (AI12) when the lighting in the space is set to the desired brightness. This setpoint can be retrieved later by the control system to set the feedback loop, etc. |

To identify the data points on the O3 follow the instructions in *Using IoTWorX*, Section 3.2.2, Add multiple devices through a network scan. When this step is complete, your configuration in Workbench should look like this:

| A (0) BACnet | t                                     |
|--------------|---------------------------------------|
| 🖌 💿 Der      | vices                                 |
| ⊢ jai        | ICONICS BACnet-AWS 367                |
| a (m)        | O3 Hub 2                              |
| +            | 🔤 Acoustic Activity Level             |
| +            | 😼 Color Temperature                   |
| •            | 😼 Internal Humidity                   |
| Þ            | 😼 Internal Temperature                |
| •            | 🔯 IR Temperature                      |
| •            | 😼 Light Level                         |
| •            | 🕼 Light Sensor Blue Component         |
| •            | 🔯 Light Sensor Green Component        |
| •            | 🔯 Light Sensor Red Component          |
| •            | 🔯 Occupant Humidity                   |
| •            | 🕼 Occupant Temperature                |
| •            | 🖾 Sound Level                         |
| •            | 🔯 Thermal Load                        |
| •            | 😼 Universal IO Channel 1 Analog Input |
| •            | 🔯 Universal IO Channel 2 Analog Input |
| •            | I Acoustic Occupancy Threshold        |
| •            | 🔟 IR Code Repeats                     |
| <            |                                       |

Figure 11 Devices and objects discovered on the O3

# 5.3 Create a publish list

For this test installation, enter **Delta O3 Publist** for the name of the Publish List and select the points listed above. When this step is complete, your publish list configuration in ICONICS Workbench should look like this:

| n  | e: Delta O3 Publist                                                   |      |                                   |                |   |              |
|----|-----------------------------------------------------------------------|------|-----------------------------------|----------------|---|--------------|
| ne | eral Published Points                                                 |      |                                   |                |   |              |
| ŋ  | nts exposed by the publisher (Click here to add multiple tags) (Click | c to | remove duplicates)                |                |   |              |
|    | Point Name                                                            | ٣    | Publish Name                      | Send Timestamp | T | Writable     |
|    | Click here to add new item                                            |      |                                   |                |   |              |
|    | bacnet:O3 Hub 2\Acoustic Occupancy\presentValue                       |      | Acoustic_occupancy                | 1              |   |              |
|    | bacnet:O3 Hub 2\Acoustic Occupancy Threshold\presentValue             |      | Acoustic_occupancy_<br>threshhold | $\checkmark$   |   |              |
|    | bacnet:O3 Hub 2\Occupancy Inactvity Period\presentValue               |      | Audio_inactivity_peri<br>od       | $\checkmark$   |   |              |
|    | bacnet:03 Hub 2\Occupancy Audio Retrigger Period\presentValue         |      | Audio_retrigger_peri<br>od        | $\checkmark$   |   |              |
|    | bacnet:O3 Hub 2\Occupancy Audio Sensitivity\presentValue              |      | Audio_sensitivity                 | $\checkmark$   |   |              |
|    | bacnet:O3 Hub 2\Occupant Humidity\presentValue                        |      | Humidity                          | $\checkmark$   |   |              |
|    | bacnet:O3 Hub 2\Internal Temperature\presentValue                     |      | Internal_temperature              | $\checkmark$   |   |              |
|    | bacnet:O3 Hub 2\IR Temperature\presentValue                           |      | IR_temperature                    | $\checkmark$   |   |              |
|    | bacnet:O3 Hub 2\Light Level\presentValue                              |      | Light_level                       | $\checkmark$   |   |              |
|    | bacnet:O3 Hub 2\Light Level Setpoint\presentValue                     |      | Light_level_setpoint              | $\checkmark$   |   | $\checkmark$ |
|    | bacnet:O3 Hub 2\Motion Sensitivity\presentValue                       |      | Motion_sensitivity                | <b>V</b>       |   |              |

Figure 12 Publish List with selected objects of interest

It is useful to enter a Publish Name manually in the Publish Name column, as that will make it easier to parse the data in Azure later.

# 5.4 Create a custom encoder

For this setup, create a custom encoder called **CustomJSONEncoder**. In the General Settings section, select **One value for each message** for the Message Type. In the Value Format enter:

```
{

"id": "%PUBLISHNAME%",

"v": "%VALUE%",

"q": "%STATUS.GOOD%",

"t": "%NOWUTC.TEXT%"

}
```

When this step is complete, your configuration in Workbench should look like this:

| Full Path: MyProject/Inter                                                | net of Things/Custom Encoders/Decoders                                                               | [ENCODER/DECODER] [IOT-GATEWAY] |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------------|
| Name: CustomJSON                                                          | encoder                                                                                              |                                 |
| General Settings                                                          |                                                                                                      | Á 🗎                             |
| Plugin:                                                                   | CustomJson                                                                                           | •                               |
| Message Type:                                                             | One value for each message                                                                           | •                               |
| Value Format:<br>(Add keyword)<br>(Set default format)<br>(Auto indent)   | {<br>"id": "%PUBLISHNAME%",<br>"v": "%VALUE%",<br>"q": "%STATUS.GOOD%",<br>"t": "%NOWUTC.UNIX%"<br>} |                                 |
| Message Format:<br>(Add keyword)<br>(Set default format)<br>(Auto indent) | {<br>"id": "%PUBLISHNAME%",<br>"v": "%VALUE%",<br>"q": "%STATUS.GOOD%",<br>"t": "%NOWUTC.UNIX%"<br>} |                                 |

Figure 13 Custom encoder

# 5.5 Create a publisher connection

For this setup, enter **To\_CentralHub** for the name of the Publisher Connection. Uncheck the Enable compatibility checkbox.

For the Encoder, enter **CustomJSONEncoder**.

For the Publish List, enter **Delta O3 PubList**.

For the Connection String enter the **Device primary connection string** noted in Section 3.2 above.

When this step is complete, your configuration in Workbench should look like this:

| Full Path: MyProject/Inter | net of Things/Publisher Conn | ections [PUBLISHER CONNECTION] [IC                                                           |   | EWA |
|----------------------------|------------------------------|----------------------------------------------------------------------------------------------|---|-----|
| Name: To_CentralHub        | 1                            |                                                                                              |   |     |
| General Settings           |                              |                                                                                              |   |     |
| The connection is en       | abled                        |                                                                                              |   |     |
| Enable compatibility       | with ICONICS clients         |                                                                                              |   |     |
| Connection Type:           | Azure IoT Hub                |                                                                                              |   | •   |
| Encoder:                   | CustomJSONencoder •          |                                                                                              |   | 1   |
| Heartbeat Rate:            | 20 🌲                         | Second(s) (0 = no timeout)                                                                   |   |     |
| Publish List:              | Delta O3 Publist             | ۍ •                                                                                          | 1 | +   |
| IoT Hub Settings (Cli      | ck to configure the headers) |                                                                                              |   |     |
| Connection String:         | HostName=centralhu           | b.azure-devices.net;DeviceId=IoTWorX;SharedAccessKey=Z4nZ+++++++++++++++++++++++++++++++++++ |   | 0   |
| Protocol:                  | Automatic                    |                                                                                              |   | •   |
| Max Message Size:          | 250,000 ‡                    | (bytes)                                                                                      |   |     |

Figure 14 Publisher Connection

After you create and save the Publisher Connection, click the button in the top menu bar to start or restart the Publisher Service. At this point, data should start flowing to Azure IoT Hub, which you can confirm first by locally viewing the data being sent by IoTWorX and then by viewing the data received at the hub.

# 5.6 Viewing data sent by IoTWorX

To visualize the data being sent by IoTWorX, launch the Data Explorer application in the ICONICS Tools folder in the computer's Start Menu. Navigate to **My Computer**  $\rightarrow$  **Data Connectivity**  $\rightarrow$  **BACnet**  $\rightarrow$  **O3 Hub 2** and click on **Occupant Temperature**. You should see a **Present Value** for the temperature:

| Tata Explorer by ICONICS, Inc.   |   |                               |                   | - |        | ×       |
|----------------------------------|---|-------------------------------|-------------------|---|--------|---------|
| Search: 🝷 🔎 🔁                    |   | bacnet:O3 Hub 2\Occup         | pant Temperature\ |   |        |         |
| * 🚺 Occupant Temperature 🕴 💋 🍸   |   |                               |                   |   |        |         |
| Motion Sensitivity               |   | Group List                    |                   |   |        | Q       |
| Motion Sensor                    | ~ | Basic / Object                |                   |   |        |         |
| MQTT Password                    |   | Description                   |                   |   |        |         |
| NTP Enable                       |   | Object Type                   | Analog Input      |   |        | _       |
| ► O Hub 2                        |   | Present Value                 | 15.445640         |   |        |         |
|                                  |   | Basic / Status                |                   |   |        | _       |
| Occupancy                        |   |                               |                   | _ |        | _       |
| Occupancy Audio Retrigger Period |   | Reliability                   | No Fault Detected |   |        |         |
| Occupancy Audio Sensitivity      |   | Out Of Service                |                   |   |        |         |
| Occupancy Audio Update Period    | ~ | Advanced / Engineering Values |                   |   |        |         |
| Occupancy Inactivity Period      |   | Min Present Value             | -40.00000         |   |        |         |
| Occupancy Remaining Latch Time   |   | Max Present Value             | 125.00000         |   |        | -       |
| Occupant Humidity                | 4 |                               |                   |   |        | ×.      |
| Occupant Temperature             |   |                               |                   |   |        |         |
| ackedTransitions                 |   |                               |                   |   | App    | oly     |
| 4 Þ                              | 1 |                               |                   | 1 | Not La | aged In |

Figure 15: Viewing data collected by IoTWorX using ICONICS Data Explorer on the gateway machine

# 5.7 Viewing data received by IoT Hub

See Install and use Azure IoT explorer for step-by-step instructions for

using the Azure IoT explorer tool to monitor incoming data. Upon launching Azure IoT Explorer, enter the **IoT Hub primary connection string** noted in Section 3.2 above.

If IoTWorX and IoT Hub are configured as described in this article, after navigating to **centralhub**  $\rightarrow$  **Devices**  $\rightarrow$  **IoTWorX**  $\rightarrow$  **Telemetry** and clicking **Start**, data should be seen in the main window:

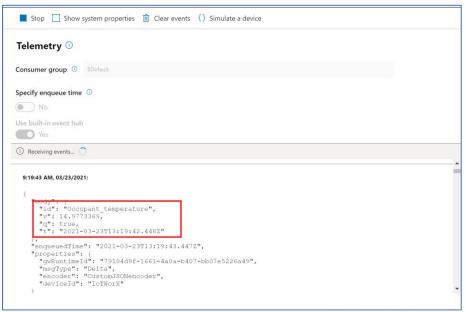



Figure 16: Viewing data received by IoT Hub

In this screen capture we see again the value of the Occupant Temperature collected by the O3 Sense, this time as it is received at the IoT Hub.

# 6 Routing data from IoT Hub to Event Hub

Typically, you would have many devices send data to the same IoT Hub, so we need a way to filter the incoming data for that from just the O3.

# 6.1 Creating a filter for the data

First, we need to create an attribute on the incoming data by which to filter it. To do this, we add a property to the Azure device twin for the device as configured in the IoT Hub. In the Azure portal, select the IoT Hub **centralhub** and click on **IoT devices** and select the **IoTWorX** device. On the **IoTWorX** device page, click on **Device twin**:

| 🖬 🔥 IoTWorX - Microsoft Azure                           | × +                                                                                               |                     | -                      |         |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------|------------------------|---------|
| $\leftarrow$ $\rightarrow$ $f C$ $f \Omega$ $f D$ https | ://portal.azure.com/#blade/Microsoft_Azure_lotHub/StandaloneFrameBlade/path/%2Fdevices%2Fdevice 🏠 | £≞                  | ۵                      |         |
| $\equiv$ Microsoft Azure $\checkmark$ Search            | n resources, services, and docs (G+/) 🛛 😨 😡 😥 🔅 ? 🙄 🙀                                             | spyro<br>Rosoft (si | os@spyro<br>Pyrosspyro | s.com 🕘 |
| Home > centralhub >                                     |                                                                                                   |                     |                        |         |
| IoTWorX ☆ …<br>centralhub                               |                                                                                                   |                     |                        | ×       |
| 🗟 Save 🖾 Message to Device 🗡 Dir                        | ect Method 🕂 Add Module Identity 📰 Device twin 🔍 Manage keys 🗸 💍 Refresh                          |                     |                        |         |
|                                                         | IoTWorX                                                                                           |                     |                        |         |
| Device ID                                               |                                                                                                   |                     |                        |         |
| Primary Key 🕕                                           |                                                                                                   |                     | ٢                      | ß       |
| Secondary Key 🕕                                         |                                                                                                   |                     | ٢                      | D       |
| Primary Connection String 🕕                             |                                                                                                   |                     | •                      | D       |
| Secondary Connection String 🕕                           |                                                                                                   |                     | ٩                      | D       |
| Enable connection to IoT Hub 🌒                          | Enable      Disable                                                                               |                     |                        |         |
| Parent device 🌘                                         | No parent device                                                                                  |                     |                        |         |
| Module Identities Configurations                        |                                                                                                   |                     |                        |         |
| Module ID C                                             | onnection State Connection State Last Updated Last Activity Time (UTC)                            |                     |                        |         |
| There are no module identities for this de              | vice.                                                                                             |                     |                        |         |
| 1                                                       |                                                                                                   | _                   |                        |         |

Figure 17: Azure IoT Hub Device Twin

On the next screen, note the value of the deviceID. This was automatically created for the Twin when we created the IoT device was created in IoT Hub:

#### "deviceId": "IoTWorX"

Note that you can also see this deviced in IoT Explorer, show in Figure 16: Viewing data received by IoT Hub, last line. Now we can add tags section with device location if you want to use Device Twin Data Enrichment functionality. In the portal add the following:

So that it looks like this:

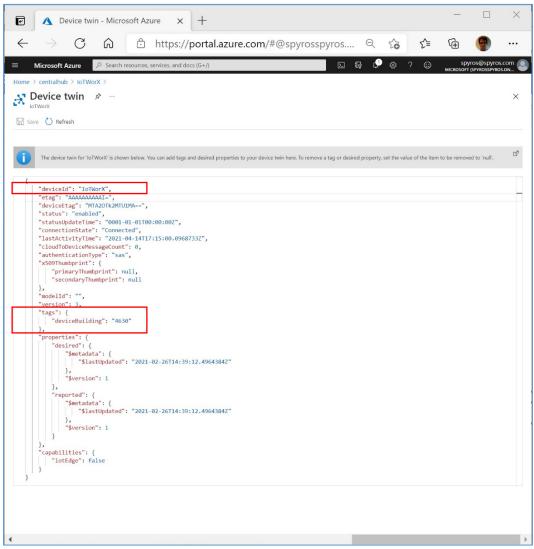



Figure 18: Azure IoT Hub Device Twin properties

# 6.2 Configuring routing and data enrichment

Next, we configure IoT Hub message routing for data with the device twin tag of **IoTWorX** to the Event Hub we created earlier. In the Azure portal, select the IoT Hub **centralhub** and click on **Message routing** in the left menu.

In the Enrich messages tab, add a message enrichment with the following parameters:

| Parameter | Value                                               |
|-----------|-----------------------------------------------------|
| Name      | Enter <b>deviceBuilding</b> .                       |
| Value     | Enter <b>\$twin.tags.deviceBuilding.</b>            |
| Endpoint  | Select <b>iotworx</b> in the dropdown, <b>Event</b> |
|           | Hubs section.                                       |

In the portal it should look like this:

| Send data from your devices to endpoints that yo | u choose                                                                            |             |          |
|--------------------------------------------------|-------------------------------------------------------------------------------------|-------------|----------|
| Routes Custom endpoints Enrich mer               |                                                                                     |             |          |
| · · · · · · · · · · · · · · · · · · ·            | These are added as application properties to messages sent to chosen endpoint(s). L | asm more    |          |
|                                                  | se a value to stamp the IoT Hub name (for example, Siothubname) or information from |             |          |
| Name                                             | Value                                                                               | Endpoint(s) |          |
| deviceBuilding                                   | stwin.tags.deviceBuilding                                                           | iatworx     | <b>a</b> |
|                                                  |                                                                                     | 0 selected  | ~        |
| Apply                                            |                                                                                     |             |          |
|                                                  |                                                                                     |             |          |

Figure 199: Azure IoT Hub Data Enrichment

Next, to add the route we want, we need to create a Custom Endpoint first. Select **Custom endpoints** tab and click **+ Add.** 

| Home > centralhub > IoT_projects > |                                     |                                    |                                |                     |            |                  |                           |                           |                           |
|------------------------------------|-------------------------------------|------------------------------------|--------------------------------|---------------------|------------|------------------|---------------------------|---------------------------|---------------------------|
| 😢 centralhub   Messag              | ge routing 🛷 …                      |                                    |                                |                     |            |                  |                           |                           | ×                         |
| Search (Ctrl+/) «                  | Send data from your devices to endp | points that you choose.            |                                |                     |            |                  |                           |                           |                           |
| 🕺 Overview 🄶                       |                                     |                                    |                                |                     |            |                  |                           |                           |                           |
| Activity log                       | Routes Custom endpoints             | Enrich messages                    |                                |                     |            |                  |                           |                           |                           |
| Access control (IAM)               | Choose which Azure services will re | ceive your messages. You can add u | up to 10 endpoints to an IoT h | ub.                 |            |                  |                           |                           |                           |
| 🗳 Tags                             | + Add 🖉 Synchronize keys            | 🗊 Delete 🜔 Refresh                 |                                |                     |            |                  |                           |                           |                           |
| Diagnose and solve problems        | Event hubs                          |                                    |                                |                     |            |                  |                           |                           |                           |
| 🗲 Events                           | Service bus queue                   | me and high throughput scenarios.  |                                |                     |            |                  |                           |                           |                           |
| Settings                           | Service bus topic                   | Namespace                          | Event Hubs                     | Authentication type | Status     | Last known error | Last known error time     | Last successful send atte | Last send attempt time    |
| Shared access policies             | Storage                             | centralhubs                        | iotworx                        | Key-based           | 🛛 Healthy. | Transient        | Thu, 01 Apr 2021 22:12:54 | Thu, 15 Apr 2021 13:50:00 | Thu, 15 Apr 2021 13:50:00 |
| 💲 Identity                         |                                     | centralhubs                        | 1000                           | Key-based           | Unknown    | Unknown          | Unknown                   | Unknown                   | Sat, 03 Apr 2021 15:11:09 |
| Pricing and scale      Networking  | ✓ Service Bus queue                 |                                    |                                |                     |            |                  |                           |                           |                           |

*Figure 20: Azure IoT Hub Custom Endpoints* 

On the next page, select Event Hub namespace and Instance created previously and click Create:

| ~      |
|--------|
| ~      |
|        |
| b.     |
|        |
| -      |
| $\sim$ |
|        |
|        |
|        |

Figure 21: Azure IoT Hub Custom Endpoints creation

Now we are ready to create new Route, select the Routes tab, and click + Add.

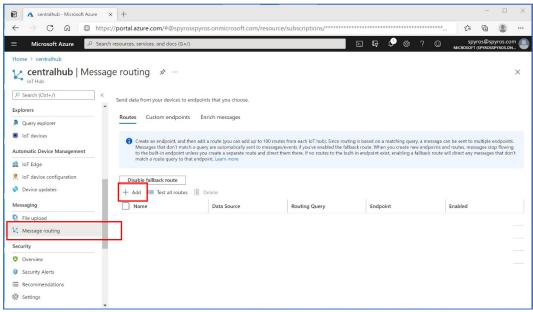



Figure20: Message routing

To create the environment used in this example, set the parameters as follows:

| Parameter     | Value                                           |
|---------------|-------------------------------------------------|
| Name          | Enter <b>iotworxroute</b> .                     |
| Endpoint      | Click the down arrow and select iotworx.        |
| Routing query | Enter <b>\$twin.deviceId</b> = <b>'IoTWorX'</b> |

### 6.3 Viewing data received by Event Hub

To monitor the data received from the IoT Hub by the Event Hub, we will use Microsoft Visual Studio. First download and install <u>Visual Studio Code</u>, then the <u>Azure Event Hub Explorer</u>. Open Visual Studio Code and follow these steps.

- 1. Select View → Extensions → Azure Event Hub Explorer.
- 2. Select View → Command Palette → Event Hub: Select Event Hub

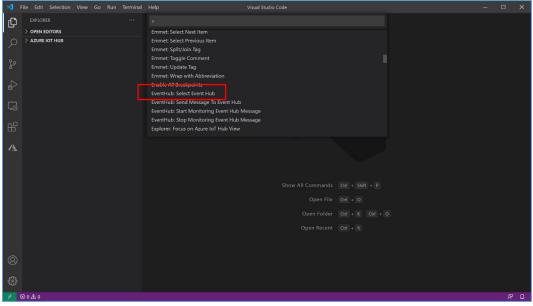



Figure 21: Select Event Hub

- 3. From the drop-down select subscription **Subscription-1**.
- 4. From the drop-down select resource group iotprojects.
- 5. From the drop-down select event hub namespace centralhubs.
- 6. From the drop-down select event hub iotworx.
- 7. From the top menu select View → Command Palette → Event Hub: Start monitoring.

| ×  | File Edit Selection View Go Run Terminal                                      | Help Visual Studio Code                                                                                           |  | - 1 | x c |
|----|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--|-----|-----|
| Ð  |                                                                               |                                                                                                                   |  |     |     |
|    | ✓ Ŷ Subscription-1                                                            | EventHub: Select Event Hub                                                                                        |  |     |     |
| Q  | <ul> <li>centralhubDPS</li> <li>Y visual Studio Ultimate with MSDN</li> </ul> | Azure IoT Hub: Start Monitoring Built-in Event Endpoint<br>Azure IoT Hub: Stop Monitoring Built-in Event Endpoint |  |     |     |
|    |                                                                               | Azure IoT Hub: Stop Monitoring Custom Event Hub Endpoint                                                          |  |     |     |
|    |                                                                               | EventHub: Send Message To Event Hub                                                                               |  |     |     |
|    |                                                                               | EventHub: Start Monitoring Event Hub Message                                                                      |  |     |     |
| æ  |                                                                               | EventHub: Stop Monitoring Event Hub Message                                                                       |  |     |     |
| Γø |                                                                               |                                                                                                                   |  |     |     |
|    |                                                                               |                                                                                                                   |  |     |     |
| Л  |                                                                               |                                                                                                                   |  |     |     |
|    |                                                                               | PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL<br>No problems have been detected in the workspace.                        |  |     | ^ X |
| 8  |                                                                               |                                                                                                                   |  |     |     |
|    |                                                                               |                                                                                                                   |  |     |     |
|    | ⊗ 0 △ 0 Azure: spyros@spyros.com                                              |                                                                                                                   |  |     | ₽ Q |

Figure 202: Start monitoring Event Hub

At this point, data should start appearing:

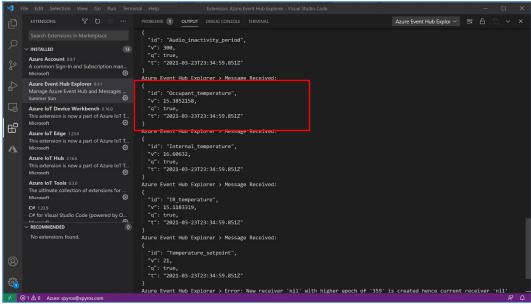



Figure 213: Data arriving in Event Hub

In this screen capture we see again the value of the Occupant\_temperature collected by the O3, this time it is received at the Event Hub.

# 7 Configuring an Azure Function to push data from Event Hub to SQL Server

There are multiple ways to write the streaming data to SQL Server. In a previous whitepaper, <u>Monitoring</u> <u>Building Air Quality</u>, we describe the steps to do this from IoT Hub with an Azure Stream Analytics job. In the section below we show how to do this from the Event Hub created above in a more cost-efficient manner using an Azure Function, though this way is more complex to set up and requires some coding skills.

# 7.1 Creating the Function App

In the Azure portal select **+ Create a resource** and select the **Function App** category. To create the environment used in this example, on the **Basics** page set the parameters as follows:

| Setting           | Value                                                                                          |
|-------------------|------------------------------------------------------------------------------------------------|
| Subscription      | Enter your Azure IoT subscription name. In our example, this is <b>Subscription-1</b> .        |
| Resource Group    | Enter IoT_projects.                                                                            |
| Function App name | Enter DataEnrichmentCS.                                                                        |
| Publish           | Select <b>Code</b> .                                                                           |
| Runtime stack     | Select .NET                                                                                    |
| Version           | Select <b>3.1</b> .                                                                            |
| Region            | Select the region where you have created the IoT Hub. In our example, this is <b>East US</b> . |

Select **Next : Hosting**. On the **Hosting** page, accept the defaults.

Select Next : Monitoring. On the Monitoring page, turn off Application Insights.

Select **Review + Create**, then **Create** to deploy the function app.

### 7.2 Specifying configuration values

When the deployment is complete, select **Go To Resource**. From the left menu select **Configuration**, then select **+ New application setting** in the right-hand pane. Add the following:

| Name             | Value                                                                                     |
|------------------|-------------------------------------------------------------------------------------------|
| ConnectionString | Enter the connection string for the SQL Server database <b>iot</b> , noted above. Edit to |
|                  | include the password you selected for the SQL Server.                                     |

We will use this variable in the function we are about to create.

# 7.3 Creating the Function

Next, we create a function. When the deployment is complete, select **Go To Resource**. From the left menu select **Functions**, then select **+ Add** from the top menu. In the **Add Function** window, set the parameters as follows:

| Setting                  | Value                                                                  |
|--------------------------|------------------------------------------------------------------------|
| Develop environment      | Select <b>Develop in portal.</b>                                       |
| Template                 | Select Azure Event Hub trigger.                                        |
| New Function             | Enter IoTWorXToSQL                                                     |
| Event Hub connection     | Select recently created EventHub connection from the list (not IoT Hub |
|                          | EventHub endpoint)                                                     |
| Event Hub name           | Enter <b>iotworx</b> .                                                 |
| Event Hub consumer group | Enter <b>tosql</b>                                                     |

Click **Add** to create the function. Once created, click on **IoTWorXToSQL** in the list on the right to open the function page. Click **Code + Test** in the left menu, select **run.csx** in the drop-down at the top and replace the code in the window with the following and click **Save** (formatting below modified to fit to page).

```
#r "System.Data.Common"
#r "Microsoft.Azure.EventHubs"
#r "Newtonsoft.Json"
using System;
using System.Text;
using System.Data;
using System.Data.SqlClient;
using Microsoft.Azure.EventHubs;
using Newtonsoft.Json;
public static async Task Run(EventData[] events, ILogger log)
{
    var exceptions = new List<Exception>();
    string cs = Environment.GetEnvironmentVariable("ConnectionString");
    if(string.IsNullOrEmpty(cs)) {
            log.LogError("DB Connection string is not defined!");
    }
                                                                         (Continued on next page)
```

```
foreach (EventData eventData in events)
  {
    try
    {
      string messageBody = Encoding.UTF8.GetString(eventData.Body.Array, eventData.Body.Offset, eventData.Body.Count);
      Message m = JsonConvert.DeserializeObject<Message>(messageBody);
       var deviceBuilding = "UnknownBuilding";
       if(eventData.Properties.ContainsKey("deviceBuilding")){
        deviceBuilding = eventData.Properties["deviceBuilding"].ToString();
      }
      log.LogInformation($"device Building is: {deviceBuilding}");
      var insertScript = $"INSERT INTO [dbo].[Telemetry] ([Building],[Parameter],[Value],[TimeStamp]) VALUES (@Building,
@Parameter, @Value, @Date)";
      using (SqlConnection connection = new SqlConnection(cs))
      {
        SqlCommand command = new SqlCommand(insertScript, connection);
        command.Parameters.AddWithValue("@Building", deviceBuilding);
        command.Parameters.AddWithValue("@Parameter", m.id);
        command.Parameters.AddWithValue("@Value", m.v);
        command.Parameters.AddWithValue("@Date", m.t);
        try{
          connection.Open();
          var rows = command.ExecuteNonQuery();
        }
        catch(Exception ex){
          log.LogError(ex.Message);
        }
      }
      log.LogInformation($"C# Event Hub trigger function processed a message: {messageBody}");
      await Task.Yield();
    }
    catch (Exception e)
    {
      exceptions.Add(e);
    }
  }
  if (exceptions.Count > 1) throw new AggregateException(exceptions);
  if (exceptions.Count == 1) throw exceptions.Single();
}
public class Message{
  public string id {get;set;}
  public double v {get;set;}
  public DateTime t {get; set;}
}
```

Finally, select function.json in the drop-down at the top. It should look like this:



Note that the configuration file specifies **iotworx**, the Event Hub from which the function will read data.

The **IoTWorXToSQL** function is called every time a message or a batch of messages arrives at the **iotworx** Event Hub and inserted into the Telemetry table of the SQL database. Briefly the code above works as follows:

| Line starting                    | Function                                                                   |
|----------------------------------|----------------------------------------------------------------------------|
| string cs =                      | Identifies the SQL database <b>iot</b> , getting it from upon the variable |
|                                  | ConnectionString noted in Section 3.4 above.                               |
| Message m =                      | Identifies the IoT Hub centralhub, getting it from function.json           |
| <pre>var insertScript =</pre>    | Writes a record to the SQL database, mapping the attributes in the         |
|                                  | records arriving at the IoT Hub to the fields in the SQL table             |
| <pre>public class Message{</pre> | Identifies the attributes of the record arriving at the Event Hub          |

# 7.4 Viewing data received by SQL Server

To verify that the function is working correctly launch SQL Server Management Studio on your desktop, connect to **iothome**, right click on the **iot** database, and select **New Query**. Enter and execute the following query to see the data pushed to SQL Server:

SELECT \* FROM [dbo].[Telemetry] order by TimeStamp desc

The results in SSMS:

| SQLQuery1.sql - iothome.database.windows.net.iot (iot<br>Edit View Query Project Tools Window |          |              | the observed and over the hold of                       | and other  |                                                    |                                                  |            |     |
|-----------------------------------------------------------------------------------------------|----------|--------------|---------------------------------------------------------|------------|----------------------------------------------------|--------------------------------------------------|------------|-----|
|                                                                                               |          |              |                                                         |            |                                                    |                                                  |            |     |
| 🕨 🕶 🔍 🕂 🔁 👻 🔛 🔐 🕌 New Query 🚽                                                                 |          |              |                                                         |            |                                                    |                                                  |            |     |
| Y iot                                                                                         | 1 80     |              | 8888888                                                 |            | 4E E4 🐌 -                                          |                                                  |            |     |
| ect Explorer 👻 무 >                                                                            | 5010     | Duen/3 s     | ql - iott (iot_admin (100))*                            | 5          | QLQuery1.sgl - iotiot (iot.admin (89))* + ×        |                                                  |            |     |
| nnect- 🖞 🍟 = 🍸 🔿 🦘                                                                            | 9020     |              | t * from dbo.telemetr                                   |            |                                                    |                                                  |            | _   |
| iothome.database.windows.net (SQL Server 12.0.2000.                                           |          |              |                                                         |            |                                                    |                                                  |            |     |
| Databases                                                                                     | 100      | 5 - 1        |                                                         |            |                                                    |                                                  |            |     |
|                                                                                               | E F      | lesuits p    | Messages                                                |            |                                                    |                                                  |            |     |
| 🗉 🛑 System Databases                                                                          |          | Building     | Parameter                                               | Value      | TimeStamp                                          |                                                  |            |     |
| 🖃 🛢 iot                                                                                       | 1        | 4630         | Light_level                                             | 445.999969 | 2021-03-15 23:15:13:343                            |                                                  |            |     |
| 🖭 🛑 Database Diagrams                                                                         | 2        | 4530         | Motion sensor                                           | 1          | 2021-03-15 23:15:13.343                            |                                                  |            |     |
| 🖃 🛑 Tables                                                                                    | 3        | 4620         | Temperature                                             |            | 2021-03-15 23:15:13.343                            |                                                  |            |     |
| 🖭 🛑 System Tables                                                                             | 4        | 4630         | Sound_level                                             |            | 2021-03-15 23:15:13.343                            |                                                  |            |     |
| 🗄 🛑 External Tables                                                                           | 5        | 4530         | Acoustic_occupancy                                      | 0          | 2021-03-15 23:15:13:343                            |                                                  |            |     |
| 🗄 📁 GraphTables                                                                               | 6        | 4630<br>4530 | Light_level                                             | 476        | 2021-03-15 23:11:09.967<br>2021-03-15 23:11:09.967 |                                                  |            |     |
| 1 T dbo.RawTelemetry                                                                          | 6        | 4630         | Occupancy<br>Sound volume                               | 75         | 2021-03-15 23:11:09.967                            |                                                  |            |     |
| Im dbo.Telemetry                                                                              | 0        | 4630         | Motion sensor                                           | 0          | 2021-03-15 23:11:09.967                            |                                                  |            |     |
|                                                                                               | 10       | 4630         | Humidity                                                | 36.58808   | 2021-03-15 23:11:09.957                            |                                                  |            |     |
| Columns                                                                                       | 11       | 4630         | Temperature                                             | 18.0439453 | 2021-03-15 23:11:09.967                            |                                                  |            |     |
| Building (varchar(50), not null)                                                              | 12       | 4630         | Sound level                                             | 30.3593521 | 2021-03-15 23:11:09.957                            |                                                  |            |     |
| Parameter (varchar(50), not null)                                                             | 13       | 4630         | Motion_sensitivity                                      | 80         | 2021-03-15 23:11:09.967                            |                                                  |            |     |
| Value (float, null)                                                                           | 14       | 4630         | Acoustic_occupancy                                      | 0          | 2021-03-15 23:11:09.967                            |                                                  |            |     |
| TimeStamp (datetime, null)                                                                    | 15       | 4530         | Acoustic occupancy threshhold                           | 0          | 2021-03-15 23:11:09.957                            |                                                  |            |     |
| 🖹 📕 Kevs                                                                                      | 16       | 4630         | Audio_retrigger_period                                  | 1200       | 2021-03-15 23:11:09.967                            |                                                  |            |     |
| E Constraints                                                                                 | 17       | 4630         | Audio sensitivity                                       | 80         | 2021-03-15 23:11:09.957                            |                                                  |            |     |
| E i Triggers                                                                                  | 18       | 4630         | Audio_inactivity_period                                 | 300        | 2021-03-16 23:11:09.967                            |                                                  |            |     |
| 🗉 💼 Indexes                                                                                   | 19<br>20 | 4620         | Light_level<br>Motion sensor                            | 464,999969 | 2021-03-15 23:00:12:947<br>2021-03-15 23:00:12:947 |                                                  |            |     |
|                                                                                               | 20       | 4620         | Sound level                                             | 35.53399   | 2021-03-15 23:00:12:947                            |                                                  |            |     |
| E Statistics                                                                                  | 22       | 4630         | Acoustic occupancy                                      | 1          | 2021-03-15 23:00:12:947                            |                                                  |            |     |
| 🖃 🗰 Views                                                                                     | 23       | 4530         | Light level                                             | 479        | 2021-03-15 22:55:09.370                            |                                                  |            |     |
| 📧 🛑 System Views                                                                              | 24       | 4630         | Occupancy                                               | 1          | 2021-03-15 22:55:09.370                            |                                                  |            |     |
| dbo.v_O3_Pivot                                                                                | 25       | 4530         | Sound volume                                            | 75         | 2021-03-15 22:55:09.370                            |                                                  |            |     |
| External Resources                                                                            | 26       | 4620         | Motion_sensor                                           | 1          | 2021-03-15 22:55:09.370                            |                                                  |            |     |
| 🗉 🛑 Synonyms                                                                                  | 27       | 4630         | Humidity                                                | 36.58808   | 2021-03-15 22:55:09.370                            |                                                  |            |     |
| Programmability                                                                               | 28       | 4530         | Temperature                                             | 18.0439453 | 2021-03-15 22:55:09.370                            |                                                  |            |     |
|                                                                                               | 29       | 4630         | Sound_level                                             | 28.705883  | 2021-03-15 22:55:09.370                            |                                                  |            |     |
|                                                                                               | 30       | 4630         | Motion sensitivity                                      | 80         | 2021-03-15 22:55:09.370                            |                                                  |            |     |
| Extended Events                                                                               | 31       | 4620<br>4620 | Acoustic_occupancy                                      | 0          | 2021-03-15 22:55:09.370                            |                                                  |            |     |
| 🗄 🗰 Storage                                                                                   | 32<br>33 | 4630         | Acoustic_occupancy_threshhold<br>Audio retrigger period | 0 1200     | 2021-03-15 22:55:09.370<br>2021-03-15 22:55:09.370 |                                                  |            |     |
| 📧 📁 Security                                                                                  | 34       | 4630         | Audio_sensitivity                                       | 80         | 2021-03-15 22:55:08:370                            |                                                  |            |     |
| 🗉 📕 Security                                                                                  | 35       | 4630         | Audio_inactivity_period                                 | 300        | 2021-03-16 22:55:09.370                            |                                                  |            |     |
| Integration Services Catalogs                                                                 | 35       | 4630         | Light level                                             | 479        | 2021-03-15 22:65:08:370                            |                                                  |            |     |
|                                                                                               | 37       | 4620         | Motion sensor                                           | 1          | 2021-03-15 22:45:12.903                            |                                                  |            |     |
|                                                                                               | 38       | 4630         | Sound level                                             | 29.22408   | 2021-03-15 22:45:12.903                            |                                                  |            |     |
|                                                                                               | 39       | 4630         | Acoustic_occupancy                                      | 1          | 2021-03-15 22:45:12.903                            |                                                  |            |     |
|                                                                                               | 40       | 4630         | Sound_volume                                            | 75         | 2021-03-15 22:39:09.670                            |                                                  |            |     |
|                                                                                               | 00       | uery ex      | cuted successfully.                                     |            |                                                    | iothome.database.windows.ne iot_admin (89) iot 0 | 0:00:01 1, | 408 |
| Beady                                                                                         |          |              |                                                         | Ln 103     | Col 4 INS                                          |                                                  | -          | -   |

Figure 22: SQL Server Telemetry listing

Note that each record is from a single message from the O3, for example a record for Occupant\_Temperature, a record for Light\_level. We can also display all the records at a specific time by executing the SQL view we created earlier. Right click on the **iot** database and select **New Query**. Enter and execute the following query to see the data in the view:

#### SELECT \* FROM [dbo].[v\_03\_Pivot] order by TimeStamp desc

The results in SSMS:

| 🔀 SQLQuery2.sql - iothome.database.windows.net.iot (iot a | admin (  | (81))* - Mici         | osoft SC  | L Server Manageme                                  | nt Studio  |                        |                          |                       |                      | Quick Laund        | th (Ctrl+Q)                   |           | 2  |
|-----------------------------------------------------------|----------|-----------------------|-----------|----------------------------------------------------|------------|------------------------|--------------------------|-----------------------|----------------------|--------------------|-------------------------------|-----------|----|
| e Edit View Query Project Tools Window                    | Help     |                       |           |                                                    |            |                        |                          |                       |                      |                    |                               |           |    |
| 🗢 - 💿 🔯 - 'n - 🖕 💾 🔐 🔎 New Query 🚇                        | 00       | AD                    | En X      | A 9 - C - 1                                        | R -        | 5                      |                          | F:                    | - P -                |                    |                               |           |    |
| ₩ ₩ iot ► Execute =                                       |          |                       |           |                                                    |            | - * -                  |                          |                       | - •                  |                    |                               |           |    |
| Y Y IOC VEXOCUTO                                          | V do     |                       | 6 60      |                                                    |            | 2                      |                          |                       |                      |                    |                               |           |    |
| oject Explorer 🛛 👻 👎 🗙                                    | SQU      |                       |           | (iot_admin (81))* 🔅                                |            |                        |                          |                       |                      |                    |                               |           |    |
| onnect 🕈 👯 🗏 🝸 🖒 🥠                                        |          |                       | * FROM    | [dbo].[v_03_Piv                                    | ot] orde   | r by TimeStamp         | desc                     |                       |                      |                    |                               |           |    |
| iothome.database.windows.net (SQL Server 12.0.2000.8      |          | % • <                 |           |                                                    |            |                        |                          |                       |                      |                    |                               |           |    |
| Databases                                                 | #        | Results               |           |                                                    |            |                        |                          |                       |                      |                    |                               |           |    |
| System Databases                                          |          | Date                  |           | TimeStamp                                          | Humidity   | Occupant_temperature   | Internal_temperature     | IR_temperature        | Temperature_setpoint | Acoustic_occupancy | Acoustic_occupancy_threshhold |           | 95 |
| E ipt                                                     | 1        | 2021-03-18            |           | 2021-03-18 18:41:37.887<br>2021-03-19 06:25:06.393 |            | 15.64705<br>15.0427971 | 16.60632                 | 15.4582291 14.8514519 | 21                   | 0                  | 0                             | 1200      |    |
| Database Diagrams                                         | 3        | 2021-03-19            |           | 2021-03-19 08:26:06:383                            |            | 15.050354              | 16.0977325               | 14.9269829            | 21                   | 0                  | 0                             | 1200      |    |
| 🗄 🛑 Tables                                                | 4        | 2021-03-18            |           | 2021-03-18 13:37:23:350                            |            | 15.2442169             | 16.60632                 | 15.2316284            | 21                   | 0                  | 0                             | 1200      |    |
| E Views                                                   | 5        | 2021-03-19            |           | 2021-03-19 07:30:09.507                            |            | 15.0427971             | 16.60632                 | 15.0579071            | 21                   | 0                  | 0                             | 1200      |    |
| 🗄 🛑 System Views                                          | 6        | 2021-03-21 2021-03-17 |           | 2021-03-21 14:28:33.327<br>2021-03-17 02:39:59 107 |            | 14.6475182<br>18.37125 | 15.6891533<br>19.6552963 | 14.4914169            | 21                   | 0                  | 0                             | 1200      |    |
| - dbox O3 Pivot                                           | <b>.</b> | 2021-03-17            |           | 2021-03-17 02:39:59:107                            |            |                        | 18.6405517               | 17.704052             | 21                   | 0                  | 0                             | 1200      |    |
| t Columns                                                 | 9        | 2021-03-18            |           | 2021-03-18 03:44:56:567                            |            | 15.9240112             | 17.6234856               | 15.7754631            | 21                   | 0                  | 0                             | 1200      |    |
| 1 m Triggers                                              | 10       | 2021-03-20            | 4630      | 2021-03-20 23:47:57.390                            | 48.6778069 | 15.450676              | 16.60632                 | 15.1409912            | 21                   | 0                  | 0                             | 1200      |    |
| Indexes                                                   | 11       | 2021-03-17            |           | 2021-03-17 00:31:53.697                            |            | 18.8093376             | 19.6552963               | 18.6230278            | 21                   | 0                  | 0                             | 1200      |    |
| Statistics                                                | 12       | 2021-03-21 2021-03-19 |           | 2021-03-21 17:55:40.643 2021-03-19 03:29:59 563    |            | 14.645                 | 15.5891533<br>16.60632   | 14.2849655            | 21                   | 0                  | 0                             | 1200      |    |
| External Resources                                        | 13       | 2021-03-19 2021-03-17 |           | 2021-03-19 03:29:59:563 2021-03-17 13:52:24:413    |            | 15.0427971             | 16.60632                 | 14.8489342            | 21                   | 0                  | 0                             | 1200      |    |
| H Synonyms                                                | 15       | 2021-03-17            |           | 2021-03-17 13:35:24.163                            |            |                        | 16.59373                 | 15.035244             | 21                   | 0                  | 0                             | 1200      |    |
| Programmability                                           | 16       | 2021-03-21            | 4630      | 2021-03-21 13:56:32.017                            | 45.6763573 | 14.4460983             | 15.5891533               | 14.2874832            | 21                   | 0                  | 0                             | 1200      |    |
| ± Query Store                                             | 17       | 2021-03-20            |           | 2021-03-20 22:59:55.843                            |            |                        | 16.0977325               | 15.1359558            | 21                   | 0                  | 0                             | 1200      |    |
| ± 1 Extended Events                                       | 18       | 2021-03-20 2021-03-17 |           | 2021-03-20 17:23:41.057                            |            | 15.2492523             | 16.0977325 18.6406517    | 14.934536             | 21                   | 0                  | 0                             | 1200      |    |
| Extended Events                                           | 19       | 2021-03-17 2021-03-21 |           | 2021-03-17 19:44:37.617 2021-03-21 19:48:46 030    |            |                        | 18.6406517               | 17.228199             | 21                   | 0                  | 8                             | 1200      |    |
| Security                                                  | 21       | 2021-03-22            |           | 2021-03-22 01:08:59 147                            |            |                        | 15.0805654               | 13,8720512            | 21                   | 0                  | P                             | 1200      |    |
| Security                                                  | 22       | 2021-03-22            |           | 2021-03-22 02:13:02:307                            |            |                        | 15.0805664               | 13.8720512            | 21                   | 0                  | 0                             | 1200      |    |
| E Integration Services Catalogs                           | 23       | 2021-03-20            |           | 2021-03-20 20:35:48.917                            |            | 15.2492523             | 16.0977325               | 15.1384735            | 21                   | 0                  | 0                             | 1200      |    |
| Integration Services Catalogs                             | 24       | 2021-03-22            |           | 2021-03-22 05:09:09.927                            |            |                        | 15.0805664               | 13.4565977            | 21                   | 0                  | 0                             | 1200      |    |
|                                                           | 25       | 2021-03-22 2021-03-22 |           | 2021-03-22 03:49:06.470 2021-03-22 11:01:25.817    |            | 13.6353835             | 15.0805664               | 13.4666977 13.6731491 | 21                   | 0                  | 0                             | 1200      |    |
|                                                           | 20       | 2021-03-22            |           | 2021-03-19 04:02:00.017                            |            | 15.0427971             | 16.60632                 | 13.6731491            | 21                   | 0                  | 0                             | 1200      |    |
|                                                           | 28       | 2021-03-17            |           | 2021-03-17 03-44-01 337                            |            | 17 9054718             | 19 6552953               | 17 8525571            | 21                   | 0                  | 0                             | 1200      |    |
|                                                           | <        |                       |           |                                                    |            |                        |                          |                       |                      |                    |                               | >         | ł. |
| >                                                         | 00       | Query execu           | ited succ | essfully.                                          |            |                        |                          |                       | iothome.databas      | e.windows.ne       | iot_admin (81) iot 00:00:0    | 0 347 rov | "  |
|                                                           |          |                       |           |                                                    |            |                        |                          |                       |                      |                    |                               |           | ۲  |
| Ready                                                     |          |                       |           |                                                    |            |                        |                          |                       |                      |                    |                               |           |    |

Figure 23: SQL view

Note here that all the values collected by the O3 at a specific time are stored in a single record. This will make it easier to use analysis tools to display the data.

# 8 Alternative: push data from Event Hub to Azure Table Storage

If you do not need the functionality and power of SQL Server, a cost-effective alternative is to push the data to Azure Table Storage. To do this, we use a function like that used above. Follow the steps in Sections 7.1 and 7.2 above, and then continue as follows.

### 8.1 Creating the Function

Next, we create a function. When the deployment is complete, select **Go To Resource**. From the left menu select **Functions**, then select **+ Add** from the top menu. In the **Add Function** window, set the parameters as follows:

| Setting                  | Value                           |
|--------------------------|---------------------------------|
| Develop environment      | Select Develop in portal.       |
| Template                 | Select Azure Event Hub trigger. |
| New Function             | Enter EventHubToTable           |
| Event Hub connection     | Select centralhub_events_IOTHUB |
| Event Hub consumer group | Select totablestorage           |

Click **Add** to create the function. Once created, click on **EventHubToTable** in the list on the right to open the function page. Click **Integration**, to bring up the wire frame:

|                 | K Č Refresh                                  |                                                          |                                         |
|-----------------|----------------------------------------------|----------------------------------------------------------|-----------------------------------------|
| (fx) Overview   |                                              |                                                          |                                         |
| Developer       | Integration                                  |                                                          |                                         |
| Code + Test     | Edit the trigger and choose from a selection | n of inputs and outputs for your function, including Azu | ire Blob Storage, Cosmos DB and others. |
| Integration     |                                              |                                                          |                                         |
| Monitor         | 🗲 Trigger                                    |                                                          |                                         |
| 📍 Function Keys | Azure Event Hubs (events)                    |                                                          |                                         |
|                 |                                              | f Function                                               | 🕞 Outputs                               |
|                 |                                              | EventHubToTable                                          | Azure Table Storage (outputTable)       |
|                 |                                              |                                                          | + Add output                            |
|                 | 된 Inputs No inputs defined                   |                                                          |                                         |

Figure 24: Integration

Click on + Add output, and enter the following values:

| Setting                    | Value                                  |
|----------------------------|----------------------------------------|
| Binding Type               | Select Azure Table Storage.            |
| Table parameter name       | Enter outputTable.                     |
| Table name                 | Enter <b>Telemetry.</b>                |
| Storage account connection | Select storageaccountiotpr96cc_STORAGE |

The **Edit Output** box should look like this:

| 🖫 Save 🗙 Discard 📋 Delete                 |  |
|-------------------------------------------|--|
| linding Type                              |  |
| Azure Table Storage $\sim$                |  |
| outputTable                               |  |
| able name*                                |  |
| ïable name*①<br>Telemetry                 |  |
| Telemetry<br>itorage account connection*① |  |
| Telemetry                                 |  |

Click **Save** to finish the configuration. Next, Click **Code + Test** in the left menu and select **function.json** in the drop-down at the top. The JSON should contain the information from the **Create Function** wizard and the **Create Output** wizard:

```
{
  "bindings": [
   {
      "type": "eventHubTrigger",
      "name": "events",
      "direction": "in",
      "eventHubName": "iotworx",
      "cardinality": "many",
      "connection": "centralhubs_RootManageSharedAccessKey_EVENTHUB3",
      "consumerGroup": "totablestorage"
    },
    {
      "name": "outputTable",
      "direction": "out",
      "type": "table",
      "tableName": "Telemetry",
      "connection": "storageaccountiotpr96cc_STORAGE"
    }
  ]
}
```

Figure 26: Function.JSON for EventHubToTable function

Note that the input ("direction": "in") specifies **iotworx**, the Event Hub from which the function will read data and the output ("direction": "out") specifies **Telemetry**, the storage table to which the function will write the data.

Next, select **run.csx** in the drop-down at the top, and replace the code in the window with the following and click **Save** (formatting below modified to fit to page):

```
#r "Microsoft.Azure.EventHubs"
#r "Newtonsoft.Json"
using System;
using System.Text;
using Microsoft.Azure.EventHubs;
using Newtonsoft.Json;
public static async Task Run(EventData[] events, ICollector<TelemetryItem> outputTable, ILogger log)
{
    var exceptions = new List<Exception>();
    foreach (EventData eventData in events)
    {
        try
        {
            string messageBody = Encoding.UTF8.GetString(eventData.Body.Array, eventData.Body.Offset,
eventData.Body.Count);
            Message m = JsonConvert.DeserializeObject<Message>(messageBody);
            log.LogInformation($"C# Event Hub trigger function processed a message: {messageBody}");
            DateTimeOffset offsetDate = new DateTimeOffset(m.t);
            long unixTimeStamp = offsetDate.ToUnixTimeSeconds();
            outputTable.Add(
                new TelemetryItem(){
                    PartitionKey = $"PugetSound-WestCampus-SpyrosLab-{m.id}",
                    RowKey = unixTimeStamp.ToString(),
                    id = m.id,
                    v = m.v,
                    t = m.t
                }
            );
            await Task.Yield();
        }
        catch (Exception e)
        {
            \ensuremath{\prime\prime}\xspace // We need to keep processing the rest of the batch - capture this exception and continue.
            // Also, consider capturing details of the message that failed processing so it can be processed
            // again later.
            exceptions.Add(e);
        }
    }
                                                                                       (Continued on next page)
```

```
// Once processing of the batch is complete, if any messages in the batch failed processing throw an
   // exception so that there is a record of the failure.
   if (exceptions.Count > 1)
        throw new AggregateException(exceptions);
   if (exceptions.Count == 1)
       throw exceptions.Single();
}
public class Message{
   public string id {get;set;}
   public double v {get;set;}
   public DateTime t {get; set;}
}
public class TelemetryItem : Message{
   public string PartitionKey {get; set;}
   public string RowKey {get; set;}
}
```

# 8.2 Viewing data received by Azure Table Storage

To verify that the function is working correctly, from the Azure portal select **storageaccountiotpr96cc**, then from the left menu select **Storage Explorer (preview)**  $\rightarrow$  **TABLES**  $\rightarrow$  **Telemetry**. This should show data in the **Telemetry** table specified in **Function.json**:

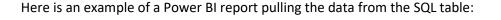

| storageaccountio             | tpr96cc   Storage Explo | orer (preview) 🖈 …                                            |                                  |                              |                               |            |                          |
|------------------------------|-------------------------|---------------------------------------------------------------|----------------------------------|------------------------------|-------------------------------|------------|--------------------------|
| Search (Ctrl+/)              | 8 Search                | Cuery + Add C Edit 19 - Select All 10 Column Options X 1      | Nelete $\Sigma$ Table Statistics | 🕐 Refresh                    |                               |            |                          |
| Overview                     | BLOB CONTAINERS         | PARTITIONKEY                                                  | <ul> <li>ROWKEY</li> </ul>       | TIMESTAMP                    | ID                            | v          | т                        |
| Activity log                 | FILE SHARES             | PugetSound-WestCampus-SpyrosLab-Acoustic.occupancy            | 1618238349                       | 2021-04-12T14-34-11.231972Z  | Acoustic occupancy            | 0          | 2021-04-12714/34/09.422  |
|                              | QUEUES                  | PugetSound-WestCampus-SpyrosLab-Acoustic occupancy, threshold | 1618238349                       | 2021-04-12T14:34:11.3490554Z | Acoustic occupency threshhold | 0          | 2021-04-12T14:34:09.42Z  |
| Tags                         | - TABLES                | PugetSound-WestCampus-SpyrosLab-Audio inactivity period       | 1618238349                       | 2021-04-12714/34/11.60723892 | Audio inactivity period       | 300        | 2021-04-12714/34/09.4212 |
| Diagnose and solve problems  | Telemetry               | PugetSound-WestCampus-SpyrosLab-Audio, retrigger, period      | 1618238049                       | 2021-04-12T14:34:11.4711426Z | Audio, retrigger, period      | 1200       | 2021-04-12T14:34:09.421Z |
| Diagnose and some problems   | Let retemetry           | PugetSound-WestCampus-SpyrosLab-Audio_sensitivity             | 1618238349                       | 2021-04-12T14/34/11.5992332Z | Audio_sensibility             | 80         | 2021-04-12714(34(09.421Z |
| Access Control (IAM)         |                         | PugetSound-WestCampus-SpyrosLab-Humidity                      | 1618237851                       | 2021-04-12T14/30/52.37837762 | Humidity                      | 36,3698769 | 2021-04-12T14:30:51.2182 |
|                              |                         | PugetSound-WestCampus-SpyrosLab-Humidity                      | 1618238049                       | 2021-04-12T14/34/10.8607083Z | Humidity                      | 36.50721   | 2021-04-12T14:34:09.42Z  |
| Data migration               |                         | PugetSound-WestCampus-SpyrosLab-Internal_temperature          | 1618238349                       | 2021-04-12114/34:11.84440772 | Internal_temperature          | 18.8924217 | 2021-04-12T14:34:09:421Z |
| Storage Explorer (preview)   |                         | PugetSound-WestCampus-SpyrosLab-IR_temperature                | 1618237851                       | 2021-04-12T14/30:52.6255531Z | IR_temperature                | 16.06752   | 2021-04-12T14:30:51.219Z |
| and the second second second |                         | PugetSound-WestCampus-SpyrosLab-IR_temperature                | 1618238349                       | 2021-04-12T14/34:11.9614903Z | IR_temperature                | 15.9995422 | 2021-04-12T14:34:09.421Z |
| ings                         |                         | PugetSound-WestCampus-SpyrosLab-Light_level                   | 1618237851                       | 2021-04-12114:30:52.25429052 | Light_level                   | 5          | 2021-04-12T14:30:51.218Z |
| -                            |                         | PugetSound-WestCampus-SpyrosLab-Light_level                   | 1618238349                       | 2021-04-12T14/34:10.6245404Z | Light_level                   | 10         | 2021-04-12T14/34/09.42Z  |
| Access keys                  |                         | PugetSound-WestCampus-SpyrosLab-Light, level, setpoint        | 1618238349                       | 2021-04-12T14:34:10.996806Z  | Light_level_setpoint          | 0          | 2021-04-12T14:34:09:42Z  |
| Geo-replication              |                         | PugetSound-WestCampus-SpyrosLab-Motion_sensitivity            | 1618238349                       | 2021-04-12114/34:11.1268972  | Motion_sensitivity            | 80         | 2021-04-12714:34:09.422  |
| Geo-replication              |                         | PugetSound-WestCampus-SpyrosLab-Motion_sensor                 | 1618239349                       | 2021-04-12T14-34-10.7416239Z | Motion_sensor                 | 0          | 2021-04-12T14:34:09.42Z  |
| CORS                         |                         | PugetSound-WestCampus-SpyrosLab-Occupancy                     | 1618238349                       | 2021-04-12T14:34:10.6715741Z | Occupancy                     | 0          | 2021-04-12T14:34:09:42Z  |
|                              |                         | PugetSound-WestCampus-SpyrosLab-Occupant_temperature          | 1618237851                       | 2021-04-12T14/30/52.4994632Z | Occupant_temperature          | 16.6088371 | 2021-04-12T14/30/51.218Z |
| Configuration                |                         | PugetSound-WestCampus-SpyrosLab-Occupant_temperature          | 1618238049                       | 2021-04-12T14:34:11.7213209Z | Occupant_temperature          | 16.6088371 | 2021-04-12T14:34:09.421Z |
| Encryption                   |                         | PugetSound-WestCampus-SpyrosLab-Sound_level                   | 1618237851                       | 2021-04-12T14/30/52/493459Z  | Sound_level                   | 31.3957424 | 2021-04-12714:30:51.218Z |
|                              |                         | PugetSound-WestCampus-SpyrosLab-Sound_level                   | 1618238049                       | 2021-04-12714/34/11.12089372 | Sound_level                   | 31,2401028 | 2021-04-12T14:34:09.42Z  |
| Shared access signature      |                         | PugetSound-WestCampus-SpyrosLab-Sound_volume                  | 1618238349                       | 2021-04-12T14/34/10.6805798Z | Sound_volume                  | 75         | 2021-04-12T14:34:09.42Z  |
| Networking                   |                         | PugetSound-WestCampus-SpyrosLab-Temperature_setpoint          | 1618238049                       | 2021-04-12T14:34:11.9694964Z | Temperature setpoint          | 21         | 2021-04-12714:34:09:4212 |

Figure 27: Storage Explorer showing data in Telemetry table

If you have applications which can access Azure Table Storage and you do not need the functionality and scale provided by SQL Server, this is a more cost-efficient method to capture the data.

# 9 Creating a Power BI application to display the data

Once you have the data in SQL or in Table Storage, you can build an Azure dashboard to display the data in real time. It is beyond the scope of this paper to describe this in detail, but the basic steps on one way to do this are as described below. You may need assistance from an IT/ICT professional familiar with SQL and Power BI to complete these steps.



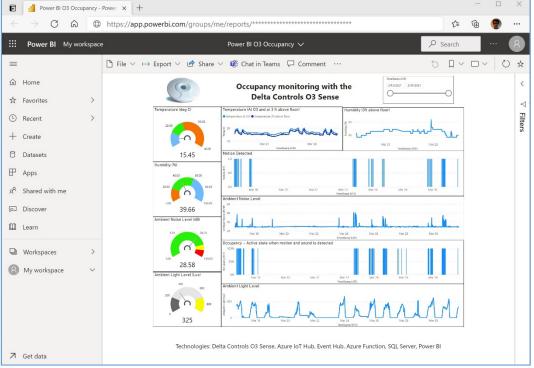



Figure 28 PowerBI.com report

To create such a dashboard, you would use the free Power BI desktop application, and do the following:

- 1. Specify the connection string for the SQL database and table, noted in Section 3.4 above.
- 2. Specify the query against the database.
- 3. Specify the chart type (on the right in the image we have some Line Charts, on the left some examples of a third-party Power BI gauge widget downloaded from the store).
- 4. Specify the axes.
- 5. Add any text or JPG.

- 6. Publish the chart to <u>http://powerbi.com.</u>
- 7. Share the workspace to authorized users.

There are multiple tutorials on the Internet on setting up Power BI dashboards and reports, which you can find easily with a simple search.

# 10 Using GENESIS64 as a no code client

ICONICS GENESIS64 can be used as a no code client to the published O3 Sense data. To do so, the following configuration needs to be setup in an Azure virtual machine with GENESIS64 installed.

Start by deploying the latest version of ICONICS Suite VM offer from the Azure Marketplace. As of this writing, the latest version of ICONICS Suite is version 10.97, available here: <u>https://azuremarketplace.microsoft.com/en-us/marketplace/apps/iconics.iconics-suite-1097?tab=Overview</u>

### 10.1 Create a custom encoder

To decode the published O3 data, we must first setup the custom encoder that instructs GENESIS64 how to understand the published data.

To set this up, in Workbench  $\rightarrow$  Internet of Things, right click on Custom Encoders/Decoders, choose Add Encoder/Decoder, and create a custom encoder like in Section 5.4 above, name it as "Delta O3 Encoder" and define the Value Format as follows:

```
{

"id": "%PUBLISHNAME%",

"v": "%VALUE%",

"q": "%STATUS.GOOD%",

"t": "%NOWUTC.TEXT%"

}
```

When this step is complete, your configuration in Workbench should look like this:

| Plugin:                                                                   | CustomJson                                                                                           | • |
|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|---|
| Message Type:                                                             | One value for each message                                                                           | • |
| Value Format:<br>(Add keyword)<br>(Set default format)<br>(Auto indent)   | {<br>"id": "%PUBLISHNAME%",<br>"v": "%VALUE%",<br>"q": "%STATUS.GOOD%",<br>"t": "%NOWUTC.TEXT%"<br>} |   |
| Message Format:<br>(Add keyword)<br>(Set default format)<br>(Auto indent) | {<br>"id": "%PUBLISHNAME%",<br>"v": "%VALUE%",<br>"q": "%STATUS.GOOD%",<br>"t": "%NOWUTC.TEXT%"<br>} |   |

Figure 29: Encoder

### 10.2 Create a subscriber connection

To start receiving published data from the O3, we have first to subscribe to the IoT Hub with a subscriber connection.

To set this up, in Workbench  $\rightarrow$  Internet of Things, right click on Subscriber Connections, choose Add Subscriber Connection, and give the subscriber connection a name, for example Delta\_O3\_Hub.

Set up the general settings of the subscriber connection as shown below:

| General Settings                                                 |                  |        |           |   |               |     | •  |
|------------------------------------------------------------------|------------------|--------|-----------|---|---------------|-----|----|
| The connection is enabled                                        | NUCC -E          |        |           |   |               |     |    |
| Enable compatibility with ICC     Collect the logged data retrie |                  | riptio | on        |   |               |     |    |
| Connection Type:                                                 | Azure IoT Hub    |        |           |   |               |     | •  |
| Early Start:                                                     | 0                | ÷      | Minute(s) | • |               |     |    |
| Default Decoder:                                                 | Delta O3 Encoder |        |           |   | •             | C   | [] |
| Dynamic Subscription Life Time:                                  | 5                | *      | Minute(s) | • |               |     |    |
| Keep Alive Timeout:                                              | 1                | ÷      | Minute(s) | • | (0 = no timeo | ut) |    |
| Browse Timeout:                                                  | 1                | ÷      | Day(s)    | • | (0 = no timeo | ut) |    |
| Pending Command Timeout:                                         | 30               | ÷      | Second(s) | • |               |     |    |
| Enable Dynamic Publish Lists                                     |                  |        |           |   |               |     |    |

Figure 10 Subscriber Connection General Settings

#### Leave the Datasets Support section with default values.

In the IoT Hub Settings section, enter the appropriate connection strings from section 3.2. Click Apply to save the configuration and start the Subscriber service.

# 10.3 Visualize and interact with published data

To visualize data from the subscribed IoT Hub, start the Data Explorer application and browse under the My Computer  $\rightarrow$  Internet of Things branch like that shown in Figure 12:

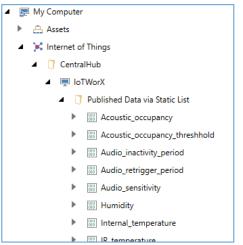



Figure 12 Browsing for published data

Select the desired published data point and you should see the data values in a table to the right like that shown in Figure 13:

| Name T                        | Value T    | Timestamp T       | Quality T |
|-------------------------------|------------|-------------------|-----------|
| Acoustic_occupancy            | 0          | 3/29/2021 2:05 PM | Good      |
| Acoustic_occupancy_threshhold | 0          | 3/29/2021 2:05 PM | Good      |
| Audio_inactivity_period       | 300        | 3/29/2021 2:05 PM | Good      |
| Audio_retrigger_period        | 1200       | 3/29/2021 2:05 PM | Good      |
| Audio_sensitivity             | 80         | 3/29/2021 2:05 PM | Good      |
| Humidity                      | 42.74052   | 3/29/2021 2:05 PM | Good      |
| Internal_temperature          | 17.678875  | 3/29/2021 2:05 PM | Good      |
| IR_temperature                | 16.4829483 | 3/29/2021 2:05 PM | Good      |
| Light_level                   | 299        | 3/29/2021 2:05 PM | Good      |
| Light_level_setpoint          | 0          | 3/29/2021 2:05 PM | Good      |
| Motion_sensitivity            | 80         | 3/29/2021 2:05 PM | Good      |
| Motion_sensor                 | 0          | 3/29/2021 2:05 PM | Good      |
| Occupancy                     | 0          | 3/29/2021 2:05 PM | Good      |
| Occupant_temperature          | 16.510643  | 3/29/2021 2:05 PM | Good      |
| Sound_level                   | 29.33028   | 3/29/2021 2:05 PM | Good      |
| Sound_volume                  | 75         | 3/29/2021 2:05 PM | Good      |
| Temperature_setpoint          | 21         | 3/29/2021 2:05 PM | Good      |

Figure 13 Published data values

The frequency of data updates and availability will be dependent on the publish rate set on the IoTWorX gateway.

# 10.4 Organizing data with ICONICS AssetWorX

AssetWorX is a digital twins module in the ICONICS Suite. Data received from IoTWorX can easily be organized into a logical structure and extended with history, alarms, and faults.

By leveraging features like equipment classes, a template for the Delta O3 can be defined and used to deploy multiple instances of the device in bulk.

Learn about AssetWorX on the ICONICS Institute here: <u>https://iconics.com/Resources/ICONICS-Institute/Units/Asset-Organization</u>

### 10.5 Create an IoT dashboard

An engaging and dynamic IoT dashboard can easily be created with ICONICS' visualization capabilities. Here is an example of such a dashboard:

| Overview             |                                                                                                                                  |           |                                                |                                       |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------------------------|---------------------------------------|--|
| of Data Partner      | Contention Reading<br>Service 10 all Provide<br>1 15.77<br>21.0<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 |           | Uper<br>unime for it, att incut<br>S<br>318.00 | Sound Land<br>united Top 21 with N UC |  |
| -                    | Temperature Hum                                                                                                                  |           | Uners                                          | 30.31                                 |  |
| Temperature Humidity | Occupancy Light Sevent                                                                                                           |           |                                                |                                       |  |
| 2728 -               |                                                                                                                                  |           |                                                |                                       |  |
| y 2158 -             |                                                                                                                                  |           |                                                |                                       |  |
| 0.6 -                |                                                                                                                                  | ~         |                                                |                                       |  |
|                      | kit bell av                                                                                                                      | Let des M |                                                | LI MARY                               |  |
|                      |                                                                                                                                  |           |                                                |                                       |  |

Figure 30 ICONICS IoT Dashboard

# 11 Next steps

If you have successfully completed the above steps you have an end-to-end example of remotely monitoring the Delta O3 Sense. With the available data, more sophisticated environment monitoring solutions can be built.