Aelta

A Delta Group Company

Measuring Occupancy Part 2 —
Connecting a Delta Controls O3 Edge
to Azure loT

Contents

S |) oo [¥ Tt d o] o ISPV PR PP 4
2 INTraStrUCTUIE OVEIVIEWoiuiiiiieiieiiie ettt sttt et ettt e s e st st e st e s bt e bt e st e s meeemeeemeeeteeneens 4
2.1 ON-Premises INTrastrUCTUIE.uuiiii ittt e e e e e e e e et e e e e e e e eeensrtaeeeeeeeesnnnrrnnees 4
2.2 CloUd INTIrASTIUCTUIE ettt st esbe e e ae e e s b e e s neeesareeeanes 4
3 Configuring AZUIre Prer@QUISITES .iiiicuiiiiiiiiieeeiireeeeiite e e srire e e s srree e e sbaeeeestbteesesnbeeeessabaeesesseeeessnssneesnnsens 5
3.1 AZUIE RESOUICE GIOUP wevvererirererereeerereteretesteeeeseteteeeseseseeeeetsseseeeeet......—...—.——.—.—.....................—...———. 5
3.2 AZUFE 0T HUD ettt ettt et e she e st e st e s be e be e ebeesbeesaeesaeas 6
3.3 EVENT HUD ...ttt sttt e s b e sbe e e sab e e sbe e e smeeesaneeennneas 6
4 ConfiGUrING the O3 EAGEuuuiiiiieeeei ittt ettt e e e e et e e e e e e e e st bteeeeeeeeesnstsaeeeeessessnnstasneseessennnnes 7
4.1 Setting UP the O3 EAGEuvveeiicieee ettt e et e et e e et e e e e e bte e e e s baee e e ennteeeennnees 7
4.2 Programming the O3 Edge to send data to AZUIEccueeiiiiieeeecciiiee et e e srre e e aaeee s 8
4.2.1 Preparing the @NVIrONMENT........oooo et e et e e e e e e e nnraae e e e e e eeennes 8
4.2.2 Creating the flOW ... e e e e e et e e e e e e e e eanraaeees 11
4.3 Viewing data received by 10T HUD ...cooiiiiiiiii s s 18
5 Routing data from [0T Hub to EVENt HUDc.eeiiiiiec e 19
5.1 Creating a filter for the dataoccvve e e 19
5.2 Configuring routing and data enrichmMeNntoo e e 21
5.3 Viewing data received by EVENT HUDcoooiiiiiiiie et 24
6 Push data from Event Hub to Azure Table STOrageccceeeecieieiciiiee et 26
6.1 Creating the FUNCLION AP .ottt e et e e e e are e e e et e e e e s bae e e esnbaeeeennnees 26
6.2 Creating the FUNCHIONooi ettt ettt e e e et e e e e e ate e e e e treeeeennes 26
6.3 Viewing data received by Azure Table STOrage......cccocuiiiiiiiiiiiiiiee et 30
A 1= 4 B = o1 30
Page 2 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

Copyright and Indemnification

Delta AND THE AUTHORS OF THIS PAPER DO NOT WARRANT OR MAKE ANY REPRESENTATIONS
REGARDING THE ACCURACY, COMPLETENESS, OR RELIABILITY OF THE MATERIALS IN THIS PAPER, ON
THIS SITE OR ON ANY OTHER WEBSITES LINKED TO THESE. THE MATERIALS ARE PROVIDED 'AS IS'
WITHOUT WARRANTIES OF ANY KIND EITHER EXPRESS OR IMPLIED. TO THE FULLEST EXTENT POSSIBLE
PURSUANT TO APPLICABLE LAW, Delta AND THE AUTORS DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, AND FREEDOM FROM
ANY COMPUTER VIRUSES.

Delta AND THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES OF ANY KIND WHATSOEVER ARISING
OUT OF OR RELATING TO THE USE OR INABILITY TO USE THIS PAPER OR THIS SITE, OR ON ANY OTHER
HYPER LINKED WEBSITE, OR THE MATERIALS ON THE SITE, WHETHER ASSERTED PURSUANT TO A
THEORY OF BREACH OF CONTRACT, NEGLIGENCE, OR STRICT LIABILITY, INCLUDING BUT NOT LIMITED TO
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO DAMAGES FOR
LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION, LOSS OF PROGRAMS OR
OTHER DATA ON YOUR INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES). SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR
LIMITATION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION
MAY NOT APPLY TO YOU.

Copyright © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc. All rights reserved.

Authors

e Spyros Sakellariadis, loT/Smart Buildings consultant, spyros@spyros.com

e Maksym Mushkin, loT/Smart Buildings architect, max.mushkin@outlook.com

e Gamal Mustapha, Director of Product Management, Delta Controls Inc.

Page 3 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

https://www.linkedin.com/in/spyross/
mailto:spyros@spyros.com
https://www.linkedin.com/in/max-mushkin/
mailto:max.mushkin@outlook.com
https://www.linkedin.com/in/gamalmustapha/

1 Introduction

In a previous whitepaper, Measuring Occupancy with Delta Controls O3 Sense, Azure loT, and ICONICS
(published simultaneously on the Delta website and on ICONICS website), we described the value of
monitoring the occupancy of spaces in commercial buildings, and detailed how to deploy an
infrastructure to do so. This whitepaper presents a simpler and lower cost architecture for collecting and
storing the data that would be appropriate for some enterprise environments.

2 Infrastructure overview

2.1 On-premises infrastructure

In the setup described in this paper, we are using a Delta Controls O3™ Edge to monitor room occupancy
with a combination of temperature, humidity, motion, sound, and light sensors. The O3 Edge is the
programmable version of the O3 Sense, it has a hardwired ethernet connection to a local area network
with access to the Internet, and sends data using the AMQP protocol over the Internet to applications in
the Microsoft Azure cloud. The on-premises configuration is shown in Figure 1:

Network switch

(e 2122
X AMQP/IP AMQP/IP e e »
Firewall Azure
- AMQF/IP IoT Hub
Delta Controls
03 Edge

Figure 1 Physical Layout

The difference between this configuration and that described in the previous whitepaper is that here
the O3 Edge pushes data directly to Azure, whereas in the previous paper we use an on-premises
gateway from ICONICS to pull data from the O3 Edge and push it to Azure. The push method is simpler
in that it does not require a separate local computer and application, but the pull method has the
advantage that the gateway can consolidate data from many on-premises devices and run local
processes to validate and analyze the data before transmitting it to Azure. The enterprise ultimately
needs to decide which configuration to use. The two configurations are fully compatible, in that they
both can send data to Azure using the same data schema, so the enterprise may use the direct-connect
method in one set of rooms or buildings, and the gateway-connected method in another.

2.2 Cloud infrastructure

The O3 Edge connects directly to an Azure loT Hub installed in the enterprise’s Azure subscription. In the
configuration described in this paper, we use Azure loT Hub’s message routing feature to route data
from the loT Hub to an Azure Event Hub based on the origin and type of data, and then use an Azure
Function to read the incoming data stream and write it to an Azure Table. Once the data is in the table,
we show how to view it with Azure Storage Explorer and create a report with Power Bl. The overall flow
is shown in Figure 2.

Page 4 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

https://deltacontrols.com/news-and-events/measuring-occupancy-with-delta-controls-o3-sense-azure-iot-and-iconics/
https://iconics.com/Documents/Whitepapers/Measuring-Occupancy-with-Delta-Controls-O3-Sense-Azure-IoT-and-ICONICS
https://deltacontrols.com/wp-content/uploads/O3_Sensor_Hub_2.0_Catalog_Sheet-4.pdf
https://azure.microsoft.com/en-us/
https://iconics.com/
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://powerbi.microsoft.com/en-us/

- —

,/V/ 3R — —____» =2a

3 (. LAY Message Routing il

AMOQP/IP Azure Event Hub
loT Hub

Figure 2 Cloud components

Azure Function

-E8

Azure Table

Import

Power BI

The following sections contain a description of how to configure the O3 Edge and the Azure components

to monitor the occupancy and other elements detected by the O3 Edge.

3 Configuring Azure prerequisites

3.1 Azure Resource Group

This article assumes the reader has basic knowledge of Microsoft cloud products and services and
understands how to create and configure resources. Consequently, only descriptions or diagrams of the
final configuration will be included, not step-by-step instructions.

The example described here uses various Azure services, deployed in a single resource group shown
below. We called the resource group loT_projects when creating this configuration. The final set of

services is shown below in Figure 3 :

B | A loTprojects- Microsoft Azwre X |
< G m

ps://portal.azure.com/# @spyrosspyros.onmicrasoft.c

Monitoring

@ insights (preview)

W plerts

" el

Microsoft Azure P search resources, services, and docs (G+/)

t+ Add Editcolumns [Delete resource group () Refresh & Export to €5V
Overview v Essentials
lter for any field, | Type==all X Location==all X 7 Addfitter
) Showing 110 13 61 13 records. [Show hidden types. @
& Tags
(] Name ©
event:
O & aspotproie
O] B ssvoctpoe
[X centralhu
O & centralhuboes
O entralhul
0
a
(]

%5 Open query

Type o

» Move

No grouping

7] [Even <
Location Ty

East US

Figure 3: Azure Resource Group

The key services we will use in this solution are the following:

Page 5

© 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

Resource Type Function

centralhub loT Hub Receive data from the O3 Edge
centralhubs Event Hubs Namespace Holds multiple Event Hubs
Storageaccountiotpr96cc Storage account Stores telemetry from the O3 Edge
DataEnrichmentCS Function App Writes data from Event Hub to Storage

3.2 Azure loT Hub

The first task after creating the empty resource group is to create an Azure loT Hub to receive the data
from the O3 Edge. In the Azure portal select + Create a resource, select the Internet of Things category,
and click on 10T Hub. To create the environment used in this example, set the parameters as follows:

Settings Value

Subscription Enter your Azure loT subscription name. In our example, this is Subscription-1.
Resource Group Enter loT_projects.

Region Select the region where you have created the 1oT Hub. In our example, this is East US.
IoT Hub Name Enter centralhub.

Next, select the Built-in endpoints category, and create a couple of consumer groups for use by
different readers of the data:

e deltao3hub
e 03

Next, from the left menu select 1oT Devices, then select + New at the top of the page to create a new
device. Add the following:

Name Value

Device ID Enter DeltaO3.

Finally, note the following parameters for the loT Hub, which will be needed later:

Parameter Value

Host name From Overview tab

loT Hub primary connection string From Shared Access policies a iothubowner
Device primary connection string From loT devices a DeltaO3

3.3 Event Hub

Next, we need an Event Hub to which we will route a subset of the data coming into IoT Hub. In the
Azure portal select + Create a resource, enter Event Hubs in the search category, click on Event Hubs
and Create. To create the environment used in this example, set the parameters as follows:

Page 6 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Settings Value

Subscription Enter your Azure loT subscription name. In our example, this is Subscription-1.
Resource Group Enter loT_projects.

Namespace name Enter centralhubs

Location Select the region where you have created the loT Hub. In our example, this is East US.
Pricing tier Select Standard. Do not select Basic, as Basic allows only one consumer group and we

need two to use Visual Studio to view data coming into the Event Hub.
Click Review + create. Once the Event Hub is created, go to the resource. From the left menu, select
Event Hubs and click + Event Hub at the top of the page. To create the environment used in this

example, set the parameters as follows:

Settings Value

Name Enter deltao3.

Next, select the Consumer groups category, and several consumer groups for use by different readers of
the data:

e monitoring
e monitoringwithvscode
e EventHub2Table

4 Configuring the O3 Edge

4.1 Setting up the O3 Edge

This guide from Delta Controls describes how to install and set up the O3 Edge. To set up the 03, you
will need an Android or iOS device with the O3 Setup app installed. You can get the app from Google
Play or the App Store.

Key steps to configure the O3 are as follows:

1. Open the O3 Setup app and select Continue to enter Lite Mode.

In the lower right corner of the screen, select Connect.

3. Select your 03 to initiate a connection over Bluetooth, O3 units are displayed in the order of
signal strength.

4. Once the connection is initiated, select Verify. The O3 should play a sound and the light ring

flashes blue.

Select Yes, connect to this hub. Data loads from the hub and the status changes to Connected.

You can now view device information and sensor data from the hub in the Diagnostics tab.

After connecting to the hub, select the Settings tab.

By default, the O3 is set to DHCP. If you want to assign a static IP address to the 03, select the

pencil icon next to Network, select Static, enter the IP settings, then select Save.

N

PN,

Click Apply settings to hub, then click on the Diagnostics tab to see additional information:

Page 7 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

https://deltacontrols.com/wp-content/uploads/Quick-Start-Guide-Installation-Setup-1-1.pdf

928 WO - el

Lite voae
€ Sensor hub i
configuration
Diagnostics Settings
@ Status
® Configured Connected %

MIAU address 2 UUI4UALEI T 1I7220A

BLE beacon ID 0016A45B4E3F

System status

Ethernet 1 status Up and Running

Ethernet 2 Up and Not Running
status
Network
Network type DHCP
IP address 192.168.1.143
Subnet mask None
Gateway IP None
DNS IP None
BACnet
Ethernet Disabled
Il O <

Figure 4: Diagnostics for the O3

Confirm that the O3 Edge is connected to the local LAN and has received an IP address, so that it can
communicate outbound.

4.2 Programming the O3 Edge to send data to Azure

4.2.1 Preparing the environment

The O3 Edge makes use of a development tool called Node-RED that has proven to be an effective tool
to facilitate interoperability between different systems. Node-RED is a programming tool geared
towards wiring together hardware devices, APIs, and online services. A developer version of the O3 Edge
has a built-in web server that allows access to its browser-based editor giving developers direct access
to the MQTT topics and hardware interfaces in the O3. The available browser-based editor makes it easy

Page 8 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

to wire together flows using the wide range of pre-built nodes in the palette, in our case we take
advantage of the pre-built Azure-loT Hub node.

In addition to using pre-built nodes, JavaScript functions can be created using the rich text editor that
can be easily linked to third party nodes. Node-RED is built on Node.js and takes full advantage of its
event-driven, non-blocking model making it an ideal solution to process event-based requests at the
edge of the network.

To access the Node-RED webserver, use any web browser to connect to the device’s URL on port 1880:
http://<ip address>:1880. The IP address given to the hub over DHCP can be obtained via the
Diagnostics tab on the O3 Setup app as shown in Figure 4.

Before we can create a flow to push data to Azure loT Hub, we need to install the Azure loT Hub palette
with the appropriate nodes required for accessing Azure. On the opening screen, click on the three bars
at the top right and select Manage palette:

E & Node-RED:192.168.1.143 x |+

< C Q) A Notsecure | 192.168.1.143:1880/#flow/dbf026ca.7a0918

=<, Node-RED

Azure loT View
i

> common Import

> function (g

> network Search flows

SR Configuration nodes
Flows

> parser
Subflows

> storage Groups

v

dashboard Manage palette

cloud

v

Settings

Keyboard shortcuts
Node-RED website
vii3

Figure 5: Node-RED opening screen

In the next screen, select the Install tab to search for node-red-contrib-azure-iot-hub:

Page 9 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

User Settings

View Nodes Install

Keyboard
Q azure-iot-hub
Palette
¥ @tsib/node-red-azure-iot-hub-mod &

Connector to azure on Node-Red

% 030 8 1year 8months ag

© node-red-contrib-azure-iot-hub (£
Connector to azure on Node-Red

% 040 8 3years 5months ago

© node-red-contrib-azure-iot-hub-send-c2d
Node to send Azure loT C2D messages
002 @ 1

T az | recent

3/3260 X

instal

Instal

Figure 6: Node-RED Add Azure loT Hub module

When the module installation is complete you will see it in the nodes tab:

Page 10

E & nNod=-RED:192168.1.143 x K

<« C @ & Notsecure | 192.168.1.143:1880/%ui

Q filter r

Azure loT

> common

> function

> network

sequence

parser

storage

dashboard

cloud

alv

User Settings

View

Keyboard

Palette

Nodes Install
a filter node:
© node-red

113

12 nades

o = @ @

& nede-red-contrib-azure-iot-hub
» 040

> 4nodes

& node-red-dashboard
.2
2

© node-red-node-rbe
% 029

> 1 node

© node-red-node-tail
w o

* 1 node

update to 2.20.0

pdale 10050 || dlisablc al

updals 10 0.3.1

Figure 7: Node-RED Manage palette

© 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

4.2.2 Creating the flow

Now we need to create a ‘flow’ and deploy it so the data can be sent from the hub to Azure. This
involves creating ‘nodes’ and connecting them. First, we create a node to get the occupancy data from
the O3 Edge. We need to know the name to use to request the occupancy data, which you can find in
the published list of MQTT topics here: O3 Sensor Hub 2.0 MQTT API Reference Guide.

For occupancy, the MQTT topic we need to use is events/object/combinedOccupancy, to create the
occupancy node drag an mqtt in node onto the canvas and enter data as show below:

[} Node-RED: 192.168.1.143 x +

secure | 192.168.1.143:1880/#flow/dbf026ca. 7a091

=<2, Node-RED

Azure loT

- network

matt out Occupancy
http in
hlp response
hitp request
websocket in

wabsocket
out

tepin
tep out
tep request
udpin

udp out

Edit mgtt in node

& Properties d

@ Server nternal Broker V|| #

= Topic evenis/object/combinedOccupancy

® QoS 0 v
® Output

auto-detect (string or buffer) ~

% Name Occupancy

Figure 8: Node-RED Add Occupancy node

Repeat this process for all the other sensors using the following MQTT topics:

Sensor Name

MQTT Topic

Description

Occupancy events/object/combinedOccupancy Indicates occupancy based on the PIR motion sensor, sound
level sensor and IR sensor

Temperature events/object/occupantTemperature Returns temperature based on IR temperature sensor and
built-in thermistors in the unit

Humidity events/object/occupantHumidity Returns calculated humidity at the occupant height

Sound Level events/object/soundLevel Gives sound level in dB (does not record or translate speech)

Light Level events/object/lightLevel Returns light level as seen by the hub

Motion events/object/motion Uses PIR sensor to return the presence of motion

The finished input section will look like this:

Page 11

© 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

https://deltacontrols.com/wp-content/uploads/MQTT-API-Reference-Guide-1-1.pdf

& @)

Mode-RED : 182.168.1.143 £

a Azure loT + || =
~ network -
matt in 50 e,
cupancy |
‘ ([omupaney
T mtt out |
! L PY
) CE=EEN

Chip response |

M A Notsecure

192.168.1,143:1880/#flow/dbf026ca 7a0318 e o= B

http request
)
websocket In’ Sound Level [
wabsockat

| %,
i [Light Level [,

ik)
top out
top request
—
udp in
T udpout

N

m - o+

Figure 9: All sensor nodes

Next, we need to create a node that processes the data retrieved from the O3 Edge. To control how and
when the data is sent to Azure, we will save the data temporarily in a local variable which we will

retrieve later. The code we will use to do this is this:

var occupancy = flow.get("occupancy");
occupancy = JSON.parse(msg.payload);
flow.set("occupancy", occupancy);
return msg;

To do this, create a Save Occupancy node by dragging a function node onto the canvas and enter the

code above as show below:

E & Node-RED:192.168.1,143 % IS n b %
& G @ A Notsecure | 192.168.1,143:1880/#f) 75| o= ’
a Azure loT Edit function node
~ function £ Praperties & B H
8 ¥ Name Save Oceupancy &~
switch Cocupancy
change g = Setup Function Close
Temperature
Gl 1 war occupancy = get(“occupancy”);
e 2 occupancy = JSO e(msg.payload) ;
template - RH 3 flow.set("oc oceupancy);
— 4 return msg;
delay -
Sound Leve!
trigger
il o
COUNTOWT Light Lavel
e o
Mation
siring
> network
= Outputs 1 .
> sequence .
” O Enabled

Page 12

© 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

Figure 10: Add Save Occupancy node

Select the Setup tab and enter the following code to initialize the occupancy variable.

Edit function node

@ Properties o

W Name Save Occupancy &~
Setup Function Close
1
3- if [flow.get(cu; A
4 flow.set{"occu)
HE Y

O Enabled

Figure 11. Initialize local variable

Once the node is created, to tell it where the occupancy data is, you need to wire it to the occupancy

node. Drag a line from the Occupancy node to the Save Occupancy node:

E & NodeRED: 192.168.1,143 x B - b %
& C R & Notsecure | 192.168.1.143:1880/#flow/dk Y5 1= L]
=<5, Node-RED
a Azure loT +|[=
> common 1 > = =
Ocsupargy Save Occupancy
~ function
i Temperature
switch ®
RH
change
range Sound Level
template °
Light Leve!
delay
e
e . Motion
countdown
tbe
string
> network
> sequence - , =
. -0+

Figure 12: Save Occupancy node connected

Repeat this process for all the other nodes, adjusting the Save code appropriately. The finished product:

Page 13

© 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

E Node-RED ; 192.168.1,143 x IS
& C QO A No 192.168,1,143:1880/#flow/d s | = *
=< Node-RED
Azure loT =
> common
~ function o
Qceupancy Save Occupancy
function 2
Temperature Save Temperature
switch
@
change: RH Save RH
range
Sound Level Save Sound Level
template
e
delay Light Leve! Save Light Level
trigger =}
Motion Save Motion
countdown
tbe
string
> network
> sequence - . <

Figure 13: Save nodes connected

Next, we need to prepare the date to send to Azure. For this, we create a Prepare Sensors Message
function node and connect it to any one of the Save nodes:

(=] E Node-RED : 192.168.1,143
< C @ & No 5 1= *
=<2 Node-RED
Azure loT + || =
» common =
Prepare Sensors Message
~ function
®
function Qcoupancy Save Occupancy
switch e P
Temperature Save Temperature
change
a
range RH Save RH
template o Y
Sound Leve! Save Sound Level
delay
8 .
trigger Light Level Save Light Level
countdown
Mation Save Motfion
be
string
> network
> sequence o s

Figure 14: Prepare sensors node

The code we put inside the Prepare Sensors message is as follows:

Page 14 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

//cycle through all sensors and send a friendly id name
//as well as the Present_Value of that sensor

var time = new Date().toISOString();

for (i =1; 1 < 7; i++) {

if (i==1) {
id = H
pv = flow.get().Present_Value;
}
if (i==2) {
id = ;
pv = flow.get().Present_Value;
}
if (i==3) {
id = 5
pv = flow.get() .Present_Value;
}
if (i==4) {
id = ;
pv = flow.get() .Present_Value;
}
if (i==5) {
id = 5
pv = flow.get().Present_Value;
}
if (i==6) {
id = H
pv = flow.get() .Present_Value;
}

msg.payload = {

} // end msg.payload
node.send(msg);

} // end for

return;

//

var id = ““; // sensor name

var pv = ; // present value

var s = ; // indicator that message is sent at regular value of 15 seconds

To get the JSON structure we want to send to Azure, we need to create the variables id (the thing being
measured), pv (the present value of that thing), time, and s (a variable which will distinguish whether
we are sending on a regular interval or change of value). In the code, we initialize the variables at the
top and then get the saved data in a loop, putting it into the variables. We then create the message

payload using the structure needed for the Azure message.

Finally, we need to add another function node that will connect to Azure loT Hub:

Page 15

© 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

5] Mocle-RED ; 192.168.1.143 x IS . = #
& C @ A Notsecure | 192.168.1.143:1880/#flow/dbf026ca.7a0918 7% = L 3
-
a Azure loT +|| =
» common i &
> function
‘ S
e —. (Prepare Sensors Message ([——— Y
> sequence ; Y L ®
OGoUPANGY [et} Save Occupancy (0
> parser [~ i
P L Py
> storage 0O 3 Save Temy o
> dashboard " 'y
RH [0 | SaveRH O
 cloud — | J Bl
L]]
Sound Level (———————() Save Sound Level)

Light Leve! [———————] Save Light Level (=]

- Mation [et Save Mofion \:.
.
al¥

1 -0+

Figure 15: Add Azure IoT Hub node

Inside the Azure l1oT Hub node we add the URL for the loT Hub we created in Section 3.2 above:

Edit Azure loT Hub node
Delete Cancel m
1 Properties & B =
Name Azure loT Hub
Protocol amqp ~
M Hostname centralhub.azure-devices.net
O Enabled

Figure 16: Add Azure IoT Hub node

This completes the end-to-end flow. Now we need to add a node to specify the interval to send data. To
do this, we add a Trigger node with the configuration shown below, and wire it to the Prepare Sensors
Message node:

Page 16 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

5] Node-RED : 192.168.1,143 % B - = bl
& G A A Notsecure | 192.168.1.143:1880/#flow/dbf026ca.7a0918 5 T= L 3
=<2 Node-RED -
—e Node-R -
af Azure loT Edit inject node
> common Delete Gancel
i Y o | % Properties & @ H
Trigger every 15 secord U o)
ary R —
- function =
= 1 - 8. b ¥ Name Trigger every 15 secord
‘ switch { Ocoupancy { —————) ' Save Occupancy
: change [e % msg. payload = - timestamp x
b d [Save Tem) (e}
; range 0
° = msg. topic =|vg B
template RH —— | SawRH O
delay O 7 @
2 Sound Leve! [——————() Save Sound Level o
‘
—_— °
TL countdown ; Light Level (—————) | Savelightlevel ()
J — +3
r)
e 'y S
€ ‘ Motion (e Save Mofion 5 & inject once after | 0.1 | seconds, then
¢ sting - §i
r C Repeat interval v
> network
every| 15 seconds v
> sequence ==
v C Enabled

Figure 17: Add Trigger node

Sensor data changes on Change of Value (COV) and is saved when the COV increment is exceeded. This
flow will retrieve the saved data, process, and send data to Azure loT hub every 15 seconds. We have set
the time interval small for testing purposes. In production, we would probably change this to about
every five minutes as there is no need to record sensor data such as room temperature or humidity
every 15 seconds. However, we will want to know the instant occupancy status changes, not just on a
regular interval. To do this, we add a separate Prepare Occupancy Message node that is executed on

change of value (COV):

B Node-RED : 192.168.1,143 % IS N b %
&« C O A Notsecure | 192.168.1.143:1880/#flow/dbf026ca. 70918 % | ’
a Azure loT + =
> common = =
° Py
> tonction TR S TSRS s Prapar sarsars iessoge SR
> network
f) ® | ®
—— [A, 2
> sentmnca | Ocoupancy) (). SaveOccipancy [" Prepare Ocoupancy Message |
> parser 2 e L
(Save fa}
> storage
e e, e L
> dashboard Gl —
~ cloud P L
Sound Level [] Save Sound Level ()
a0 E :
Light Leve! [————————() Save Light Level
i 1 c b
Mation '—'j Save Mofion ‘T
.
- y
N 7| |—|of+

Figure 18: Add Prepare Occupancy node

Page 17

© 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

The new node, including the code inside it, is similar to the Prepare Sensors Message, with the
exception that the node is not wired to the trigger node, and we have changed the explanatory variable
s from 15s to COV:

var occupancy = flow.get(" "
var s = "COV"; // indicator that message is sent because value changed
msg.payload = {

occupancy.Present_Value :new Date().toISOString(), "s":s}

}

return msg

Having created all the nodes, click the red Deploy button at the top right to activate this flow. Note the
solid green boxes under the MQTT incoming messages and the solid blue box under the Azure loT Hub
box, this indicates that the nodes are successfully connected. If this box is not solid check the syntax and
spelling used in these nodes. The completed flow looks like this:

E B NodeReD: 1321681143 x |+
(5 C @ A& Notsecure | 192.168.1.143:1880/#flow/dbi026ca 1 5 = @ @ -

Azure loT =

:
— e e —— g

Occupancy Save Occupancy Prepare Occupancy Message
> parser Temperature Save Temperature

RH Save RH
» cloud Sound Leve! Save Sound Level

Light Level Save Light Level

Motion Save Mation

Figure 19: Completed flow

4.3 Viewing data received by loT Hub

See Install and use Azure loT explorer for step-by-step instructions for using the Azure loT explorer tool
to monitor incoming data. Upon launching Azure loT Explorer, enter the l1oT Hub primary connection
string noted in Section 3.2 above.

If the O3 Edge and IoT Hub are configured as described in this article, after navigating to centralhub -
Devices - DeltaO3 - Telemetry and clicking Start, you should see the O3 Edge data streaming in every
15 seconds:

Page 18 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer

File Edit View Window Help

Azure loT Explorer (preview)

Home > centralhub > Devices > DeltaO3 > Telemetry

Notifications

£ Device identity

B3 Device twin

[Telemetry

»< Direct method

= Cloud-to-device message
& Module identity

&7 10T Plug and Play compone...

W Stop [| Show system properties [i] Clear events {}

Telemetry ©
Consumer group ©

Specify enqueue time ©

(@ Receiving events.. Y

Simulate a device

12:57:17 PM, 05/03/2021:

Figure 20: Azure loT Explorer showing data from O3 Edge

5 Routing data from loT Hub to Event Hub

Typically, you would have many devices send data to the same loT Hub, so we need a way to filter the
incoming data from just the O3.

5.1 Creating a filter for the data

First, we need to create an attribute on the incoming data by which to filter it. To do this, we add a
property to the Azure device twin for the device as configured in the loT Hub. In the Azure portal, select
the loT Hub centralhub and click on loT devices and select the DeltaO3 device. On the DeltaO3 device
page, click on Device twin:

Page 19

© 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

B A Dsltad3- Microsoft Azure

& C @

x B

@ httpsy//portal.azure.com/#blade/Microsoft_Azure_lotHub/StandaloneFrameBlade/pathy/%2Fdevices%2Fdevice%3Fdevicel

= Microsoft Azure A Search resources, services, and docs (G+/)

Home > centralhub >

DeltaO3 =
centrahu
5] Message to Device > Direct Method - Add Module identity
Device 1D @ Deltad3
Primary Key @

Secondary Key @)

Primary Connection String @)

T Manage keys

O Refresh

Secondary Connection String @

Enable connection to loT Hub @ (®) Enable O Disable

Parent device @

Madule Identities Configurations

Madule ID Connection State Connection State Last Updated ...

There are no module identities for this device.

4

Last Activity Time (UTC)

X
B
el p
=
=]l p
2] p

Figure 21: Azure loT Hub DeltaO3 Device

On the next screen, note the value of the devicelD. This was automatically created for the Twin when

the loT device was created in loT Hub:

"deviceId": "DeltaO3"

Now we can add a tags section with device location if you want to use Device Twin Data Enrichment

functionality. In the portal add the following:

"tags": {

"deviceBuilding": "PugetSound-WestCampus-SpyrosLab",

"deviceName": "DeltaO3"

}s

So that it looks like this:

Page 20

© 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

B | A Devicetwin-MicrosoftAzure X |

& C @ | @ httpsy/portalazure.com/#@spyrosspyros.onmicrosoft.com/resource/subscriptions/ ** * === rroes i s ares Hubs/centr...

= Microsoft Azure O Search resources, services, and docs (G +/)

Home > centralhub > DeltaO3 >

4 Device twin - »
L [

() Refresh

ted”,
" "2021-85-12714:23:17.58467692"
18]

S
"primaryThumbprint™: null,
"secondaryThumbprint”: null

I

"modelId”: ""

"tags": {

"deviceld":
"devicellame”: "Deltad3"

b

"destred”: {
“$metadata’: {
"$lastUpdated": "2021-@4-29T23:56:13.48050122"
L
“$uarsion’: 1

4

low. You can add tags and desired praperties to your device twin here. To remove a teg or desired property, set the value of the

te

m to be

remaved to 'rull

Figure 22: Azure loT Hub Device Twin properties

5.2 Configuring routing and data enrichment

Next, we configure the loT Hub message routing for data with the device twin tag of DeltaO3 to the
Event Hub we created earlier. In the Azure portal, select the l1oT Hub centralhub and click on Message

routing
in the left menu.

In the Enrich messages tab, add two message enrichment entries with the following parameters:

Parameter Value

Name Enter deviceBuilding.

Value Enter Stwin.tags.deviceBuilding.
Endpoint Select deltao3 in the dropdown, Event

Hubs section.

And
Parameter Value
Name Enter deviceName.
Value Enter $twin.tags.deviceName.
Endpoint Select deltao3 in the dropdown, Event

Hubs section.

In the portal it should look like this:

Page 21 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

Routes Custom endpeints Enrich messages
Add up to 10 message enrichments per 10T Hub. These are added as application properties to messages sent to chosen endpoint(s). Learn more

Value can be any string. Additionally, you may use a value to stamp the loT Hub name (for example, $iothubname) or infarmation from the device twin (for example, $twin.tags.field or

$twin.properties.desired.value)

Name Value Endpoint(s)
deviceName Stwin.tags.deviceName ‘ 2 selected v (i see
deviceLacation Stwin.tags.deviceBuilding delta03, iaeris Tii

‘ 0 selected v

=T
Figure 239: Azure loT Hub Data Enrichment

Next, to add the route we want, we need to create a Custom Endpoint first. Select Custom endpoints
tab, click + Add, and select Event hubs.

1~ centralhub | Message routing # ®
g
Namespace Event Habs Authentication type Satus Last keowm eror Last knows eiror time Last soccesshul send atte_. Last send sttemgt time
o atwor © Heathy Transent gr
~ Service Bus qusie

Figure 20: Azure loT Hub Custom Endpoints

On the next page, enter deltao3 for the Endpoint name, select centralhubs for the Event hub
namespace, select deltao3 for the Event hub instance, and click Create:

Page 22 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

A Add an event hub endpoint- M1 X | -

< G @ 3 https;//portal.azure.com/#@spyrosspyros.onmicrosoft.com/resource/subscriptions/beb... Y8 Y= '
| Microsoft Azure P search resources, services, and docs (G+/) i s ? [spyros@spyros.com (@
] MICROSOFT (SPYROSSPYROS.ON... WP
Home > centralhub
.5 Add an event hub endpoint - X
4

Route your telemetry and device messages to a high throughput Azure Event Hub.

Endpoint name * (D

deltao3

Choaose an existing event hub

Add an existing event hub namespace and instance that share a subscription with this 10T hub.

Event hub namespace * @

| centralhubs . ‘

Event hub instance * (@

deltao3 v

4

Figure 21: Azure loT Hub Custom Endpoints creation

Now we are ready to create new Route, select the Routes tab, and click + Add. To create the
environment used in this example, set the parameters as follows:

Parameter Value

Name Enter deltao3.

Endpoint Click the down arrow and select deltao3.
Routing query Enter $twin.deviceld = ‘Delta03’

The Message routing tab may look like this after the route has been added to the list of existing routes:

Page 23 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

€ (S A g hu portalazure.com,

B Earch resources, senaces, and docs (G+

1~ centralhub | Message routing # x

Routes Custom endpoints

Management

Disable fallback route

Data Source Routing Query Endpoint Enabled

Monitoring

Figure 24: Message routes

5.3 Viewing data received by Event Hub

To monitor the data received from the loT Hub by the Event Hub, we will use Microsoft Visual Studio.
First download and install Visual Studio Code, then the Azure Event Hub Explorer. Open Visual Studio
Code and follow these steps.

1. Select View = Extensions - Azure Event Hub Explorer.
2. Select View 2 Command Palette > Event Hub: Select Event Hub

) File Edit S ew Go Run Terminal Help
EXPLORER

> OPEN EDITORS
AZURE 10T HUB

Figure 25: Select Event Hub

Page 24 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Summer.azure-event-hub-explorer

From the drop-down select subscription Subscription-1.

From the drop-down select resource group iotprojects.

From the drop-down select event hub namespace centralhubs.

From the drop-down select event hub deltao3.

From the top menu select View - Command Palette = Event Hub: Start monitoring.

Noukw

Go Run Terminal Help

5 0 Azuressy m

Figure 26: Start monitoring Event Hub

At this point, data should start appearing:

Aizure Event Hub Explor

~ INSTALLED

nt Hub Explorer >

Humidity",
43

nt Hub Explorer e Received:

* RECOMMENDED

found

X @0A0 Awre:sp com

Figure 27: Data arriving in Event Hub

In this screen capture we see the data collected by the O3 as it is received at the Event Hub.

Page 25 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

6 Push data from Event Hub to Azure Table
Storage

There are multiple ways to store the data streamed to loT Hub. In a previous whitepaper, Monitoring
Building Air Quality, we describe the steps to do this with an Azure Stream Analytics job writing to SQL
Server. In the section below, we show how to do this by routing the data from the loT Hub to an Event
Hub and then writing it with an Azure Function to an Azure Table. This is more cost-efficient than using
Azure Stream Analytics and SQL Server, though this way is more complex to set up and requires some
coding skills. Depending upon the way you want to use the data, it may be adequate to store it in an
Azure Table, but some analytical tools may require it being stored in SQL Server.

6.1 Creating the Function App

In the Azure portal select + Create a resource and select the Function App category. To create the
environment used in this example, on the Basics page set the parameters as follows:

Setting Value

Subscription Enter your Azure loT subscription name. In our example, this is Subscription-1.
Resource Group Enter loT_projects.

Function App name Enter SimpleDataEnrichment.

Publish Select Code.

Runtime stack Select Node.js.

Version Select 14 LTS.

Region Select the region where you have created the 1oT Hub. In our example, this is East US.

Select Next : Hosting. On the Hosting page, accept the defaults then select Next : Monitoring. On the
Monitoring page, turn off Application Insights. Finally, select Review + Create, then Create to deploy
the function app.

6.2 Creating the Function

Next, we create a function. When the deployment is complete, select Go To Resource. From the left
menu select Functions, then select + Add from the top menu. In the Add Function window, set the
parameters as follows:

Page 26 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

https://iconics.com/Documents/Whitepapers/Monitoring-Building-Air-Quality
https://iconics.com/Documents/Whitepapers/Monitoring-Building-Air-Quality

Setting Value

Develop environment Select Develop in portal.

Template Select Azure Event Hub trigger.

New Function Enter EventHub2Table

Event Hub connection Click New, then select centralhubs for Event Hub connection, deltao3
for Event Hub connection, and click OK

Event Hub name Enter deltao3

Event Hub consumer group Enter EventHub2Table.

Click Add to create the function. Once created, click on EventHub2Table in the list on the right to open

the function page. Click Integration, to bring up the wire frame:

B A EventHub2Table - Microsoft Az X | 4

&~ C 0] G https://portal.azure.com/#blade/WebsitesExtension/FunctionMenuBlade/integration/resourc... & 6 v

B TRl © search resources, services, and dacs (G-+/)

Home > SimpleDataEnrichment > EventHub2Table

EventHub2Table | Integration

Function

2 search (Ctri+/) « () Refresh
A} Querview
Developer Integration
Il Code s Toct Edit the trigger and choose fram a selection of inputs and outputs for your function, including Azure Blob Starage, Cosmas DB and athers.
Integration
TToromTT Trigger
FUNCtKeYS Azure Event Hubs
{eventHubMessages) f Function Qutputs
EventHub2Table
<l Inputs + Add output

+ Add input

Ll

Figure 28: Integration wire frame

Next, click Code + Test in the left menu and select function.json in the drop-down at the top. The JSON

should contain the information from the Create Function wizard:

"bindings": [
{

"type": "eventHubTrigger",
"name": "eventHubMessages",
"direction": "in",
"eventHubName": "delta®@3",
"connection": "centralhubs_RootManageSharedAccessKey EVENTHUB",
"cardinality": "many",

"consumerGroup": "eventhub2table"

Page 27 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.

All rights reserved

Next, select index.js in the drop-down at the top, and replace the code in the window with the following
and click Save (formatting below modified to fit to page):

const azure = require('azure-storage');

// App Settings should have variables AZURE_STORAGE_ACCOUNT and AZURE_STORAGE_ACCESS_KEY, or
// AZURE_STORAGE_CONNECTION_STRING
const tableService = azure.createTableService();
var tableName = process.env["OutputTableName"] || "OutputTable";
var tableUpdateInterval = process.env["TableUpdateInterval"] || 5;
module.exports = async function (context, eventHubMessages) {

// Create Table if not exists

tableService.createTableIfNotExists(tableName, function (error, result, response) {

if (error) {

context.log.warn(error);

1
var roundCoef = 60 * tableUpdateInterval; // number of seconds in {tableUpdateInterval} minutes
var updateTasks = {};
eventHubMessages.forEach((message, index) => {
// Extract partition key(device location and name) from the IotHub Enriched properties taken from
// IoTHub device twin
var devicelocation = context.bindingData.propertiesArray[index].devicelLocation;
var deviceName = context.bindingData.propertiesArray[index].deviceName;
var partitionKey = devicelocation + '-' + deviceName;
// Convert datetime to unix timestamp and round it
var unixTime = Math.round(new Date(message.t).getTime() / 1000);
var rowKey = (Math.floor(unixTime / roundCoef) * roundCoef).toString();

// Check if Update Task already exists for this row, otherwise create

if(updateTasks[partitionKey+rowKey] == null)

{
updateTasks[partitionKey+rowKey] =
{
PartitionKey: partitionKey,
RowKey: rowKey
¥
}

// Add new property to Update Task

updateTasks[partitionKey+rowKey][message.id] = message.v;

1)

(Continued on next page)

Page 28 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

// Proceed with all Insert/Update operations
for(var key in updateTasks){
var updateTask = updateTasks[key];
context.log(updateTask);
// Create new row or update exisitng
tableService.insertOrMergeEntity(tableName, updateTask, function(error, result, response){
if(error){

context.log.warn(error);

s

1

Finally, we need to edit the file package.json, which you can access from the App files section in the
portal, and add a reference to Azure storage there. In the portal:

3 Microsoft Azure £ Search resources, services, and docs (G+/) 0 ? maxfly@outlook.com @&
MICROSOFT (SPYROSSPYROS.0.. &

ome > Resource groups > loT_projects » SimpleDataEnrichment
SimpleDataEnrichment | App files
Function App

[.2 search (cmd+/) | « O Refresh

> Overview
SimpleDataEnrichment | package json ~

B Activity log
1

A Access control (IAM) 2 “name': "SimpleDataEnrichment®,

& T 3 “version”: "8.1.0",

ags 4 “description”: "Azure Function sample showing how to CRUD with Model]S & Azure Table Storage”,

> Diagnose and solve problems 5 R
6 "dependencies": {

© Security 7 “azure-storage": "72.18.1"
8 }.

Events (preview) a "devDependencies": {},
] 10 "scriptst: {

Functions 11 "test": "echo \"Error: no test specified\" && exit 1"
12 h

£l Functions 13 “author”: "Maksym Mushkin",
14 "license": "MIT",

= 15 "bugs™: {

16 "url": "https: ithub.com/maxmushkin/DataEnrichment"

B App files i’ , ps://g /! /

2 Proxies 18 “homepage": "https://github.com/maxmushkin/DataEnrichment"
19 i}

Deployment

Figure 29: Azure Function App files

The section that needs to be added there is this:

"dependencies": {
"azure-storage": "72.10.1"

Page 29 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

It tells application runtime to load the azure-storage npm module since it will be used in the
source code to access Azure Table Storage. Without this section the code will not import the
Azure Storage module and will raise an exception for the lines bellow:

const azure = require('azure-storage');

// App Settings should have variables AZURE_STORAGE_ACCOUNT and
AZURE_STORAGE_ACCESS_KEY, or AZURE_STORAGE_CONNECTION_STRING
const tableService = azure.createTableService();

6.3 Viewing data received by Azure Table Storage

To verify that the function is working correctly, from the Azure portal select storageaccountiotpr96écc,
then from the left menu select Storage Explorer (preview) = TABLES = TelemetryPivot. This should
show data in the TelemetryPivot table specified in Function.json:

B | A DelaOcPuotlable - Microso!. X | A4 storagesccountiotprdbs - x |+
<« C @ @ nhttpsy/portal

ossp nmi
] Microsoft Azure £ Search resources, services, ar e
jome > storagea:

== storageaccountiotpr96cc | Storage Explorer (preview) =

Figure 30: Storage Explorer showing data in TelemetryPivot table

7 Next steps

If you have successfully completed the above steps, you have a working end-to-end example of pushing
data from the O3 Edge to Azure. Now you can build various monitoring dashboards with tools like Power
Bl, Time Series Insights, Node-RED , and others. Here is an example of a Power Bl report we created
using the data from the above flow:

Page 30 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

m Table {PST) - Power Bl Desktop o Search

File Home Insert Modeling View Help

Boetdaav [& [B & By B~ [B Refresh [Newvisual [E] v New measure] &L Publish
[l {/.(. TimeStamp < [FCIEe
= Occupancy - Games room == =
. - [) < |l
5; . Light level (lux) Sound level (dB) Temperature (deg C) -'51 i ;I
Roomis | = - ‘ _ ‘
) z) 2 i C
Empty | B LR A o)
1 28 16

Sensor readings

Light level ®Occupant temperature ®Sound level

ALQLJJ..L_L | ‘J. i

.

: nger_f‘ b ‘ A A I

Mation sensor

Data from Delta Controls O3 Sense
Using Azure |oT Hub, Event Hub, Table Sterage, Azure Functions, Power B

Page 1 *+

Page 10f 1

Figure 31: O3 Edge data in Power Bl desktop

The O3 Edge is in a room we call the Games room, containing some exercise equipment and an Xbox
console. This report spans only a few days, but there are still a few interesting observations we can
make.

First, from the light trend line, we see that the light in the room is turned on only for about an hour a
day. This happens to be when my son uses the room to exercise, and the sound level trend line shows
that he turns on music while he is doing so. On the last day shown in the trend, he and some friends
were playing an online game on the Xbox, so the light, sound, and motion trends remain on for longer.

A second observation that we can make is from the light trend. Note that the intensity of the light is
higher on the three days at the end than the preceding days. This is because the weather on the
preceding days was gloomy and overcast, and there was little light coming in through the windows,
whereas on the three days at the end there was bright sunlight. Not an earth-shattering observation,
but still interesting to see how that is reflected in the O3 Edge data!

Page 31 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

	1 Introduction
	2 Infrastructure overview
	2.1 On-premises infrastructure
	2.2 Cloud infrastructure

	3 Configuring Azure prerequisites
	3.1 Azure Resource Group
	3.2 Azure IoT Hub
	3.3 Event Hub

	4 Configuring the O3 Edge
	4.1 Setting up the O3 Edge
	4.2 Programming the O3 Edge to send data to Azure
	4.2.1 Preparing the environment
	4.2.2 Creating the flow

	4.3 Viewing data received by IoT Hub

	5 Routing data from IoT Hub to Event Hub
	5.1 Creating a filter for the data
	5.2 Configuring routing and data enrichment
	5.3 Viewing data received by Event Hub

	6 Push data from Event Hub to Azure Table Storage
	6.1 Creating the Function App
	6.2 Creating the Function
	6.3 Viewing data received by Azure Table Storage

	7 Next steps

