

Measuring Occupancy Part 2 –

Connecting a Delta Controls O3 Edge
to Azure IoT

Page 2 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Contents
1 Introduction .. 4

2 Infrastructure overview .. 4

 On-premises infrastructure ... 4

 Cloud infrastructure .. 4

3 Configuring Azure prerequisites ... 5

 Azure Resource Group .. 5

 Azure IoT Hub .. 6

 Event Hub .. 6

4 Configuring the O3 Edge ... 7

 Setting up the O3 Edge ... 7

 Programming the O3 Edge to send data to Azure .. 8

4.2.1 Preparing the environment ... 8

4.2.2 Creating the flow ... 11

 Viewing data received by IoT Hub .. 18

5 Routing data from IoT Hub to Event Hub ... 19

 Creating a filter for the data ... 19

 Configuring routing and data enrichment .. 21

 Viewing data received by Event Hub .. 24

6 Push data from Event Hub to Azure Table Storage .. 26

 Creating the Function App .. 26

 Creating the Function ... 26

 Viewing data received by Azure Table Storage ... 30

7 Next steps ... 30

Page 3 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Copyright and Indemnification

Delta AND THE AUTHORS OF THIS PAPER DO NOT WARRANT OR MAKE ANY REPRESENTATIONS
REGARDING THE ACCURACY, COMPLETENESS, OR RELIABILITY OF THE MATERIALS IN THIS PAPER, ON
THIS SITE OR ON ANY OTHER WEBSITES LINKED TO THESE. THE MATERIALS ARE PROVIDED 'AS IS'
WITHOUT WARRANTIES OF ANY KIND EITHER EXPRESS OR IMPLIED. TO THE FULLEST EXTENT POSSIBLE
PURSUANT TO APPLICABLE LAW, Delta AND THE AUTORS DISCLAIM ALL WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, AND FREEDOM FROM
ANY COMPUTER VIRUSES.

Delta AND THE AUTHORS WILL NOT BE LIABLE FOR ANY DAMAGES OF ANY KIND WHATSOEVER ARISING
OUT OF OR RELATING TO THE USE OR INABILITY TO USE THIS PAPER OR THIS SITE, OR ON ANY OTHER
HYPER LINKED WEBSITE, OR THE MATERIALS ON THE SITE, WHETHER ASSERTED PURSUANT TO A
THEORY OF BREACH OF CONTRACT, NEGLIGENCE, OR STRICT LIABILITY, INCLUDING BUT NOT LIMITED TO
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES (INCLUDING BUT NOT LIMITED TO DAMAGES FOR
LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION, LOSS OF PROGRAMS OR
OTHER DATA ON YOUR INFORMATION HANDLING SYSTEM OR OTHERWISE, EVEN IF WE ARE EXPRESSLY
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES). SOME JURISDICTIONS PROHIBIT THE EXCLUSION OR
LIMITATION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATION
MAY NOT APPLY TO YOU.

Copyright © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc. All rights reserved.

Authors
• Spyros Sakellariadis, IoT/Smart Buildings consultant, spyros@spyros.com
• Maksym Mushkin, IoT/Smart Buildings architect, max.mushkin@outlook.com
• Gamal Mustapha, Director of Product Management, Delta Controls Inc.

https://www.linkedin.com/in/spyross/
mailto:spyros@spyros.com
https://www.linkedin.com/in/max-mushkin/
mailto:max.mushkin@outlook.com
https://www.linkedin.com/in/gamalmustapha/

Page 4 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

1 Introduction
In a previous whitepaper, Measuring Occupancy with Delta Controls O3 Sense, Azure IoT, and ICONICS
(published simultaneously on the Delta website and on ICONICS website), we described the value of
monitoring the occupancy of spaces in commercial buildings, and detailed how to deploy an
infrastructure to do so. This whitepaper presents a simpler and lower cost architecture for collecting and
storing the data that would be appropriate for some enterprise environments.

2 Infrastructure overview
 On-premises infrastructure

In the setup described in this paper, we are using a Delta Controls O3™ Edge to monitor room occupancy
with a combination of temperature, humidity, motion, sound, and light sensors. The O3 Edge is the
programmable version of the O3 Sense, it has a hardwired ethernet connection to a local area network
with access to the Internet, and sends data using the AMQP protocol over the Internet to applications in
the Microsoft Azure cloud. The on-premises configuration is shown in Figure 1:

Figure 1 Physical Layout

The difference between this configuration and that described in the previous whitepaper is that here
the O3 Edge pushes data directly to Azure, whereas in the previous paper we use an on-premises
gateway from ICONICS to pull data from the O3 Edge and push it to Azure. The push method is simpler
in that it does not require a separate local computer and application, but the pull method has the
advantage that the gateway can consolidate data from many on-premises devices and run local
processes to validate and analyze the data before transmitting it to Azure. The enterprise ultimately
needs to decide which configuration to use. The two configurations are fully compatible, in that they
both can send data to Azure using the same data schema, so the enterprise may use the direct-connect
method in one set of rooms or buildings, and the gateway-connected method in another.

 Cloud infrastructure
The O3 Edge connects directly to an Azure IoT Hub installed in the enterprise’s Azure subscription. In the
configuration described in this paper, we use Azure IoT Hub’s message routing feature to route data
from the IoT Hub to an Azure Event Hub based on the origin and type of data, and then use an Azure
Function to read the incoming data stream and write it to an Azure Table. Once the data is in the table,
we show how to view it with Azure Storage Explorer and create a report with Power BI. The overall flow
is shown in Figure 2.

https://deltacontrols.com/news-and-events/measuring-occupancy-with-delta-controls-o3-sense-azure-iot-and-iconics/
https://iconics.com/Documents/Whitepapers/Measuring-Occupancy-with-Delta-Controls-O3-Sense-Azure-IoT-and-ICONICS
https://deltacontrols.com/wp-content/uploads/O3_Sensor_Hub_2.0_Catalog_Sheet-4.pdf
https://azure.microsoft.com/en-us/
https://iconics.com/
https://azure.microsoft.com/en-us/services/iot-hub/
https://azure.microsoft.com/en-us/services/event-hubs/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/features/storage-explorer/
https://powerbi.microsoft.com/en-us/

Page 5 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 2 Cloud components

The following sections contain a description of how to configure the O3 Edge and the Azure components
to monitor the occupancy and other elements detected by the O3 Edge.

3 Configuring Azure prerequisites
 Azure Resource Group

This article assumes the reader has basic knowledge of Microsoft cloud products and services and
understands how to create and configure resources. Consequently, only descriptions or diagrams of the
final configuration will be included, not step-by-step instructions.

The example described here uses various Azure services, deployed in a single resource group shown
below. We called the resource group IoT_projects when creating this configuration. The final set of
services is shown below in Figure 3 :

Figure 3: Azure Resource Group

The key services we will use in this solution are the following:

Page 6 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Resource Type Function
centralhub IoT Hub Receive data from the O3 Edge
centralhubs Event Hubs Namespace Holds multiple Event Hubs
Storageaccountiotpr96cc Storage account Stores telemetry from the O3 Edge
DataEnrichmentCS Function App Writes data from Event Hub to Storage

 Azure IoT Hub
The first task after creating the empty resource group is to create an Azure IoT Hub to receive the data
from the O3 Edge. In the Azure portal select + Create a resource, select the Internet of Things category,
and click on IoT Hub. To create the environment used in this example, set the parameters as follows:

Settings Value
Subscription Enter your Azure IoT subscription name. In our example, this is Subscription-1.
Resource Group Enter IoT_projects.
Region Select the region where you have created the IoT Hub. In our example, this is East US.
IoT Hub Name Enter centralhub.

Next, select the Built-in endpoints category, and create a couple of consumer groups for use by
different readers of the data:

• deltao3hub
• o3

Next, from the left menu select IoT Devices, then select + New at the top of the page to create a new
device. Add the following:

Name Value
Device ID Enter DeltaO3.

Finally, note the following parameters for the IoT Hub, which will be needed later:

Parameter Value
Host name From Overview tab
IoT Hub primary connection string From Shared Access policies à iothubowner
Device primary connection string From IoT devices à DeltaO3

 Event Hub
Next, we need an Event Hub to which we will route a subset of the data coming into IoT Hub. In the
Azure portal select + Create a resource, enter Event Hubs in the search category, click on Event Hubs
and Create. To create the environment used in this example, set the parameters as follows:

Page 7 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Settings Value
Subscription Enter your Azure IoT subscription name. In our example, this is Subscription-1.
Resource Group Enter IoT_projects.
Namespace name Enter centralhubs
Location Select the region where you have created the IoT Hub. In our example, this is East US.
Pricing tier Select Standard. Do not select Basic, as Basic allows only one consumer group and we

need two to use Visual Studio to view data coming into the Event Hub.

Click Review + create. Once the Event Hub is created, go to the resource. From the left menu, select
Event Hubs and click + Event Hub at the top of the page. To create the environment used in this
example, set the parameters as follows:

Settings Value
Name Enter deltao3.

Next, select the Consumer groups category, and several consumer groups for use by different readers of
the data:

• monitoring
• monitoringwithvscode
• EventHub2Table

4 Configuring the O3 Edge
 Setting up the O3 Edge

This guide from Delta Controls describes how to install and set up the O3 Edge. To set up the O3, you
will need an Android or iOS device with the O3 Setup app installed. You can get the app from Google
Play or the App Store.

Key steps to configure the O3 are as follows:

1. Open the O3 Setup app and select Continue to enter Lite Mode.
2. In the lower right corner of the screen, select Connect.
3. Select your O3 to initiate a connection over Bluetooth, O3 units are displayed in the order of

signal strength.
4. Once the connection is initiated, select Verify. The O3 should play a sound and the light ring

flashes blue.
5. Select Yes, connect to this hub. Data loads from the hub and the status changes to Connected.
6. You can now view device information and sensor data from the hub in the Diagnostics tab.
7. After connecting to the hub, select the Settings tab.
8. By default, the O3 is set to DHCP. If you want to assign a static IP address to the O3, select the

pencil icon next to Network, select Static, enter the IP settings, then select Save.

Click Apply settings to hub, then click on the Diagnostics tab to see additional information:

https://deltacontrols.com/wp-content/uploads/Quick-Start-Guide-Installation-Setup-1-1.pdf

Page 8 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 4: Diagnostics for the O3

Confirm that the O3 Edge is connected to the local LAN and has received an IP address, so that it can
communicate outbound.

 Programming the O3 Edge to send data to Azure
4.2.1 Preparing the environment

The O3 Edge makes use of a development tool called Node-RED that has proven to be an effective tool
to facilitate interoperability between different systems. Node-RED is a programming tool geared
towards wiring together hardware devices, APIs, and online services. A developer version of the O3 Edge
has a built-in web server that allows access to its browser-based editor giving developers direct access
to the MQTT topics and hardware interfaces in the O3. The available browser-based editor makes it easy

Page 9 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

to wire together flows using the wide range of pre-built nodes in the palette, in our case we take
advantage of the pre-built Azure-IoT Hub node.

In addition to using pre-built nodes, JavaScript functions can be created using the rich text editor that
can be easily linked to third party nodes. Node-RED is built on Node.js and takes full advantage of its
event-driven, non-blocking model making it an ideal solution to process event-based requests at the
edge of the network.

To access the Node-RED webserver, use any web browser to connect to the device’s URL on port 1880:
http://<ip address>:1880. The IP address given to the hub over DHCP can be obtained via the
Diagnostics tab on the O3 Setup app as shown in Figure 4.

Before we can create a flow to push data to Azure IoT Hub, we need to install the Azure IoT Hub palette
with the appropriate nodes required for accessing Azure. On the opening screen, click on the three bars
at the top right and select Manage palette:

Figure 5: Node-RED opening screen

In the next screen, select the Install tab to search for node-red-contrib-azure-iot-hub:

Page 10 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 6: Node-RED Add Azure IoT Hub module

When the module installation is complete you will see it in the nodes tab:

Figure 7: Node-RED Manage palette

Page 11 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

4.2.2 Creating the flow
Now we need to create a ‘flow’ and deploy it so the data can be sent from the hub to Azure. This
involves creating ‘nodes’ and connecting them. First, we create a node to get the occupancy data from
the O3 Edge. We need to know the name to use to request the occupancy data, which you can find in
the published list of MQTT topics here: O3 Sensor Hub 2.0 MQTT API Reference Guide.

For occupancy, the MQTT topic we need to use is events/object/combinedOccupancy, to create the
occupancy node drag an mqtt in node onto the canvas and enter data as show below:

Figure 8: Node-RED Add Occupancy node

Repeat this process for all the other sensors using the following MQTT topics:

Sensor Name MQTT Topic Description
Occupancy events/object/combinedOccupancy Indicates occupancy based on the PIR motion sensor, sound

level sensor and IR sensor
Temperature events/object/occupantTemperature Returns temperature based on IR temperature sensor and

built-in thermistors in the unit
Humidity events/object/occupantHumidity Returns calculated humidity at the occupant height
Sound Level events/object/soundLevel Gives sound level in dB (does not record or translate speech)
Light Level events/object/lightLevel Returns light level as seen by the hub
Motion events/object/motion Uses PIR sensor to return the presence of motion

The finished input section will look like this:

https://deltacontrols.com/wp-content/uploads/MQTT-API-Reference-Guide-1-1.pdf

Page 12 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 9: All sensor nodes

Next, we need to create a node that processes the data retrieved from the O3 Edge. To control how and
when the data is sent to Azure, we will save the data temporarily in a local variable which we will
retrieve later. The code we will use to do this is this:

To do this, create a Save Occupancy node by dragging a function node onto the canvas and enter the
code above as show below:

var occupancy = flow.get("occupancy");
occupancy = JSON.parse(msg.payload);
flow.set("occupancy", occupancy);
return msg;

Page 13 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 10: Add Save Occupancy node

Select the Setup tab and enter the following code to initialize the occupancy variable.

Figure 11. Initialize local variable

Once the node is created, to tell it where the occupancy data is, you need to wire it to the occupancy
node. Drag a line from the Occupancy node to the Save Occupancy node:

Figure 12: Save Occupancy node connected

Repeat this process for all the other nodes, adjusting the Save code appropriately. The finished product:

Page 14 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 13: Save nodes connected

Next, we need to prepare the date to send to Azure. For this, we create a Prepare Sensors Message
function node and connect it to any one of the Save nodes:

Figure 14: Prepare sensors node

The code we put inside the Prepare Sensors message is as follows:

Page 15 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

To get the JSON structure we want to send to Azure, we need to create the variables id (the thing being
measured), pv (the present value of that thing), time, and s (a variable which will distinguish whether
we are sending on a regular interval or change of value). In the code, we initialize the variables at the
top and then get the saved data in a loop, putting it into the variables. We then create the message
payload using the structure needed for the Azure message.

Finally, we need to add another function node that will connect to Azure IoT Hub:

//cycle through all sensors and send a friendly id name
//as well as the Present_Value of that sensor
//
var id = ““; // sensor name
var pv = ““; // present value
var s = “15s”; // indicator that message is sent at regular value of 15 seconds
var time = new Date().toISOString();

for (i = 1; i < 7; i++) {
 if (i==1) {
 id = “Occupant_temperature”;
 pv = flow.get(“temperature”).Present_Value;
 }
 if (i==2) {
 id = “Humidity”;
 pv = flow.get(“rh”).Present_Value;
 }
 if (i==3) {
 id = “Sound_level”;
 pv = flow.get(“sound”).Present_Value;
 }
 if (i==4) {
 id = “Light_level”;
 pv = flow.get(“lightlevel”).Present_Value;
 }
 if (i==5) {
 id = “Occupancy”;
 pv = flow.get(“occupancy”).Present_Value;
 }
 if (i==6) {
 id = “Motion”;
 pv = flow.get(“motion”).Present_Value;
 }
 msg.payload = {
 'deviceId':”DeltaO3”,
 'key':”OpzBY78kK4dn2J2K548MMgWn0SIJOHDeTosqmaASTw0=“,
 'protocol':”amqp”,
 'data':{“id”:id,”v”:pv,”t”:time, “s”:s}
 } // end msg.payload
 node.send(msg);
} // end for
return;

Page 16 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 15: Add Azure IoT Hub node

Inside the Azure IoT Hub node we add the URL for the IoT Hub we created in Section 3.2 above:

Figure 16: Add Azure IoT Hub node

This completes the end-to-end flow. Now we need to add a node to specify the interval to send data. To
do this, we add a Trigger node with the configuration shown below, and wire it to the Prepare Sensors
Message node:

Page 17 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 17: Add Trigger node

Sensor data changes on Change of Value (COV) and is saved when the COV increment is exceeded. This
flow will retrieve the saved data, process, and send data to Azure IoT hub every 15 seconds. We have set
the time interval small for testing purposes. In production, we would probably change this to about
every five minutes as there is no need to record sensor data such as room temperature or humidity
every 15 seconds. However, we will want to know the instant occupancy status changes, not just on a
regular interval. To do this, we add a separate Prepare Occupancy Message node that is executed on
change of value (COV):

Figure 18: Add Prepare Occupancy node

Page 18 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

The new node, including the code inside it, is similar to the Prepare Sensors Message, with the
exception that the node is not wired to the trigger node, and we have changed the explanatory variable
s from 15s to COV:

Having created all the nodes, click the red Deploy button at the top right to activate this flow. Note the
solid green boxes under the MQTT incoming messages and the solid blue box under the Azure IoT Hub
box, this indicates that the nodes are successfully connected. If this box is not solid check the syntax and
spelling used in these nodes. The completed flow looks like this:

Figure 19: Completed flow

 Viewing data received by IoT Hub
See Install and use Azure IoT explorer for step-by-step instructions for using the Azure IoT explorer tool
to monitor incoming data. Upon launching Azure IoT Explorer, enter the IoT Hub primary connection
string noted in Section 3.2 above.

If the O3 Edge and IoT Hub are configured as described in this article, after navigating to centralhub 
Devices  DeltaO3  Telemetry and clicking Start, you should see the O3 Edge data streaming in every
15 seconds:

var occupancy = flow.get("occupancy");
var s = "COV"; // indicator that message is sent because value changed
msg.payload = {
 'deviceId':"DeltaO3",
 'key':"OpzBY78kK4dn2J2K548MMgWn0SIJOHDeTosqmaASTw0=",
 'protocol':"amqp",
 'data':{"id":"Occupancy","v":occupancy.Present_Value,"t":new Date().toISOString(), "s":s}
}
return msg

https://docs.microsoft.com/en-us/azure/iot-pnp/howto-use-iot-explorer

Page 19 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 20: Azure IoT Explorer showing data from O3 Edge

5 Routing data from IoT Hub to Event Hub
Typically, you would have many devices send data to the same IoT Hub, so we need a way to filter the
incoming data from just the O3.

 Creating a filter for the data
First, we need to create an attribute on the incoming data by which to filter it. To do this, we add a
property to the Azure device twin for the device as configured in the IoT Hub. In the Azure portal, select
the IoT Hub centralhub and click on IoT devices and select the DeltaO3 device. On the DeltaO3 device
page, click on Device twin:

Page 20 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 21: Azure IoT Hub DeltaO3 Device

On the next screen, note the value of the deviceID. This was automatically created for the Twin when
the IoT device was created in IoT Hub:

"deviceId": "DeltaO3"

Now we can add a tags section with device location if you want to use Device Twin Data Enrichment
functionality. In the portal add the following:

 "tags": {
 "deviceBuilding": "PugetSound-WestCampus-SpyrosLab",
 "deviceName": "DeltaO3"
 },

So that it looks like this:

Page 21 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 22: Azure IoT Hub Device Twin properties

 Configuring routing and data enrichment
Next, we configure the IoT Hub message routing for data with the device twin tag of DeltaO3 to the
Event Hub we created earlier. In the Azure portal, select the IoT Hub centralhub and click on Message
routing
in the left menu.

In the Enrich messages tab, add two message enrichment entries with the following parameters:

Parameter Value
Name Enter deviceBuilding.
Value Enter $twin.tags.deviceBuilding.
Endpoint Select deltao3 in the dropdown, Event

Hubs section.

And

Parameter Value
Name Enter deviceName.
Value Enter $twin.tags.deviceName.
Endpoint Select deltao3 in the dropdown, Event

Hubs section.

In the portal it should look like this:

Page 22 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 239: Azure IoT Hub Data Enrichment

Next, to add the route we want, we need to create a Custom Endpoint first. Select Custom endpoints
tab, click + Add, and select Event hubs.

Figure 20: Azure IoT Hub Custom Endpoints

On the next page, enter deltao3 for the Endpoint name, select centralhubs for the Event hub
namespace, select deltao3 for the Event hub instance, and click Create:

Page 23 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 21: Azure IoT Hub Custom Endpoints creation

Now we are ready to create new Route, select the Routes tab, and click + Add. To create the
environment used in this example, set the parameters as follows:

Parameter Value
Name Enter deltao3.
Endpoint Click the down arrow and select deltao3.
Routing query Enter $twin.deviceId = ‘DeltaO3’

The Message routing tab may look like this after the route has been added to the list of existing routes:

Page 24 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 24: Message routes

 Viewing data received by Event Hub
To monitor the data received from the IoT Hub by the Event Hub, we will use Microsoft Visual Studio.
First download and install Visual Studio Code, then the Azure Event Hub Explorer. Open Visual Studio
Code and follow these steps.

1. Select View  Extensions  Azure Event Hub Explorer.
2. Select View  Command Palette  Event Hub: Select Event Hub

Figure 25: Select Event Hub

https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=Summer.azure-event-hub-explorer

Page 25 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

3. From the drop-down select subscription Subscription-1.
4. From the drop-down select resource group iotprojects.
5. From the drop-down select event hub namespace centralhubs.
6. From the drop-down select event hub deltao3.
7. From the top menu select View  Command Palette  Event Hub: Start monitoring.

Figure 26: Start monitoring Event Hub

At this point, data should start appearing:

Figure 27: Data arriving in Event Hub

In this screen capture we see the data collected by the O3 as it is received at the Event Hub.

Page 26 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

6 Push data from Event Hub to Azure Table
Storage

There are multiple ways to store the data streamed to IoT Hub. In a previous whitepaper, Monitoring
Building Air Quality, we describe the steps to do this with an Azure Stream Analytics job writing to SQL
Server. In the section below, we show how to do this by routing the data from the IoT Hub to an Event
Hub and then writing it with an Azure Function to an Azure Table. This is more cost-efficient than using
Azure Stream Analytics and SQL Server, though this way is more complex to set up and requires some
coding skills. Depending upon the way you want to use the data, it may be adequate to store it in an
Azure Table, but some analytical tools may require it being stored in SQL Server.

 Creating the Function App
In the Azure portal select + Create a resource and select the Function App category. To create the
environment used in this example, on the Basics page set the parameters as follows:

Setting Value

Subscription Enter your Azure IoT subscription name. In our example, this is Subscription-1.
Resource Group Enter IoT_projects.
Function App name Enter SimpleDataEnrichment.
Publish Select Code.
Runtime stack Select Node.js.
Version Select 14 LTS.
Region Select the region where you have created the IoT Hub. In our example, this is East US.

Select Next : Hosting. On the Hosting page, accept the defaults then select Next : Monitoring. On the
Monitoring page, turn off Application Insights. Finally, select Review + Create, then Create to deploy
the function app.

 Creating the Function

Next, we create a function. When the deployment is complete, select Go To Resource. From the left
menu select Functions, then select + Add from the top menu. In the Add Function window, set the
parameters as follows:

https://iconics.com/Documents/Whitepapers/Monitoring-Building-Air-Quality
https://iconics.com/Documents/Whitepapers/Monitoring-Building-Air-Quality

Page 27 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Setting Value
Develop environment Select Develop in portal.
Template Select Azure Event Hub trigger.
New Function Enter EventHub2Table
Event Hub connection Click New, then select centralhubs for Event Hub connection, deltao3

for Event Hub connection, and click OK
Event Hub name Enter deltao3
Event Hub consumer group Enter EventHub2Table.

Click Add to create the function. Once created, click on EventHub2Table in the list on the right to open
the function page. Click Integration, to bring up the wire frame:

Figure 28: Integration wire frame

Next, click Code + Test in the left menu and select function.json in the drop-down at the top. The JSON
should contain the information from the Create Function wizard:

{

 "bindings": [

 {

 "type": "eventHubTrigger",

 "name": "eventHubMessages",

 "direction": "in",

 "eventHubName": "delta03",

 "connection": "centralhubs_RootManageSharedAccessKey_EVENTHUB",

 "cardinality": "many",

 "consumerGroup": "eventhub2table"

 }

]

}

Page 28 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Next, select index.js in the drop-down at the top, and replace the code in the window with the following
and click Save (formatting below modified to fit to page):

const azure = require('azure-storage');

// App Settings should have variables AZURE_STORAGE_ACCOUNT and AZURE_STORAGE_ACCESS_KEY, or

// AZURE_STORAGE_CONNECTION_STRING

const tableService = azure.createTableService();

var tableName = process.env["OutputTableName"] || "OutputTable";

var tableUpdateInterval = process.env["TableUpdateInterval"] || 5;

module.exports = async function (context, eventHubMessages) {

 // Create Table if not exists

 tableService.createTableIfNotExists(tableName, function (error, result, response) {

 if (error) {

 context.log.warn(error);

 }

 });

 var roundCoef = 60 * tableUpdateInterval; // number of seconds in {tableUpdateInterval} minutes

 var updateTasks = {};

 eventHubMessages.forEach((message, index) => {

 // Extract partition key(device location and name) from the IotHub Enriched properties taken from

// IoTHub device twin

 var deviceLocation = context.bindingData.propertiesArray[index].deviceLocation;

 var deviceName = context.bindingData.propertiesArray[index].deviceName;

 var partitionKey = deviceLocation + '-' + deviceName;

 // Convert datetime to unix timestamp and round it

 var unixTime = Math.round(new Date(message.t).getTime() / 1000);

 var rowKey = (Math.floor(unixTime / roundCoef) * roundCoef).toString();

 // Check if Update Task already exists for this row, otherwise create

 if(updateTasks[partitionKey+rowKey] == null)

 {

 updateTasks[partitionKey+rowKey] =

 {

 PartitionKey: partitionKey,

 RowKey: rowKey

 };

 }

 // Add new property to Update Task

 updateTasks[partitionKey+rowKey][message.id] = message.v;

 });

(Continued on next page)

Page 29 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Finally, we need to edit the file package.json, which you can access from the App files section in the
portal, and add a reference to Azure storage there. In the portal:

Figure 29: Azure Function App files

The section that needs to be added there is this:

"dependencies": {
 "azure-storage": "^2.10.1"
 }

// Proceed with all Insert/Update operations

 for(var key in updateTasks){

 var updateTask = updateTasks[key];

 context.log(updateTask);

 // Create new row or update exisitng

 tableService.insertOrMergeEntity(tableName, updateTask, function(error, result, response){

 if(error){

 context.log.warn(error);

 }

 });

 }

};

Page 30 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

It tells application runtime to load the azure-storage npm module since it will be used in the
source code to access Azure Table Storage. Without this section the code will not import the
Azure Storage module and will raise an exception for the lines bellow:

const azure = require('azure-storage');

// App Settings should have variables AZURE_STORAGE_ACCOUNT and
AZURE_STORAGE_ACCESS_KEY, or AZURE_STORAGE_CONNECTION_STRING
const tableService = azure.createTableService();

 Viewing data received by Azure Table Storage
To verify that the function is working correctly, from the Azure portal select storageaccountiotpr96cc,
then from the left menu select Storage Explorer (preview)  TABLES  TelemetryPivot. This should
show data in the TelemetryPivot table specified in Function.json:

Figure 30: Storage Explorer showing data in TelemetryPivot table

7 Next steps
If you have successfully completed the above steps, you have a working end-to-end example of pushing
data from the O3 Edge to Azure. Now you can build various monitoring dashboards with tools like Power
BI, Time Series Insights, Node-RED , and others. Here is an example of a Power BI report we created
using the data from the above flow:

Page 31 © 2021, Spyros Sakellariadis, Maksym Mushkin, and Delta Controls, Inc.
All rights reserved

Figure 31: O3 Edge data in Power BI desktop

The O3 Edge is in a room we call the Games room, containing some exercise equipment and an Xbox
console. This report spans only a few days, but there are still a few interesting observations we can
make.

First, from the light trend line, we see that the light in the room is turned on only for about an hour a
day. This happens to be when my son uses the room to exercise, and the sound level trend line shows
that he turns on music while he is doing so. On the last day shown in the trend, he and some friends
were playing an online game on the Xbox, so the light, sound, and motion trends remain on for longer.

A second observation that we can make is from the light trend. Note that the intensity of the light is
higher on the three days at the end than the preceding days. This is because the weather on the
preceding days was gloomy and overcast, and there was little light coming in through the windows,
whereas on the three days at the end there was bright sunlight. Not an earth-shattering observation,
but still interesting to see how that is reflected in the O3 Edge data!

	1 Introduction
	2 Infrastructure overview
	2.1 On-premises infrastructure
	2.2 Cloud infrastructure

	3 Configuring Azure prerequisites
	3.1 Azure Resource Group
	3.2 Azure IoT Hub
	3.3 Event Hub

	4 Configuring the O3 Edge
	4.1 Setting up the O3 Edge
	4.2 Programming the O3 Edge to send data to Azure
	4.2.1 Preparing the environment
	4.2.2 Creating the flow

	4.3 Viewing data received by IoT Hub

	5 Routing data from IoT Hub to Event Hub
	5.1 Creating a filter for the data
	5.2 Configuring routing and data enrichment
	5.3 Viewing data received by Event Hub

	6 Push data from Event Hub to Azure Table Storage
	6.1 Creating the Function App
	6.2 Creating the Function
	6.3 Viewing data received by Azure Table Storage

	7 Next steps

